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Efficient estimation of the number of false positives in

high-throughput screening
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Abstract

This material contains introduction to the SmartTail software; proofs of Theorems 1, 2, and 3
in the paper; derivation of equation (10); additional results and discussion for dependent p-values;
sandwich estimators for dependent p-values; additional plots for the yeast genome and salt stress
screening data; and two additional examples: association mapping in Arabidopsis Thaliana and a
fMRI brain scan experiment. MATLAB scripts to simulate from the tail mixture model and to
compute the maximum likelihood estimates of the parameters of the mixture model (8) for the
cases (i)-(iii) described in the paper are also available as supplementary online material.

1 SmartTail

SmartTail is a MATLAB implementation of the methods developed in the paper for handling false pos-
itives in high-throughput screening experiments. It may also be useful in more general tail estimation
problems. SmartTail, and the data sets analyzed in this study, are available at www.smarttail.se.

The SmartTail graphical user interface consists of two panels. The left panel is used to fit the
tail model (1) and to compare the distribution of the p-values from the true null distribution with
the theoretical uniform distribution. The right panel can be used either for fitting the tail model
(1) to analyze two set of p-values separately, or for fitting the extreme tail mixture model (2) with
γ0 = γ1, and to compare it with the true null distribution in the left panel. Both panels are equipped
with model checking tools including POT plots for the parameters of the model and for the estimator
F̂ (x); Kolmogorov-Smirnov test of model fit; test of the hypothesis γ = γ0 for some fixed γ0, and
thus in particular for testing γ = 1 as suggested by Zholud (2014); test of equality of the γ-s in the
two panels; and FDR and pFDR plots. The left panel FDR and pFDR plots are with respect to
uniform distribution and the right panel FDR and pFDR plots are with respect to the distribution
in the left panel. Thus, if a sample from the true null distribution is loaded into the left panel and
a sample from an experiment is loaded into the right panel, then the right panel FDR and pFDR
plots are with respect to the true null distribution. Estimates of the parameters ci, γi, and of F (x)
and FDR/pFDR, with confidence intervals, are provided.

2 Proofs of the basic results

Throughout this supplementary material we use notation and equation numbers for the paper.
Proof of Theorem 1. We show that for i = 0, 1 there exist constants γi and functions αi(y, u) such

that
Fi(uy)/Fi(u) = y1/γi {1 + αi(y, u)} , (1)
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where αi(y, u) → 0 as u → 0, uniformly for y ∈ [ε, 1] for any 0 < ε < 1. Equation (3) in the paper
then follows by replacing uy by x in (1) and taking ci(u) = Fi(u)/u1/γi .

(i) If ξt, ξi > 0, then by Beirlant et al. (2004), Equation (2.7), we have that Ḡ←t (x) = `t(x)x−ξt

and Ḡi(x) = `i(x)x−1/ξi , where `t(x) is slowly varying as x→ 0 and `i(x) is slowly varying as x→∞.
Hence

Fi(x) = Ḡi{Ḡ←t (x)} = `i{`t(x)x−ξt}{`t(x)}−1/ξixξt/ξi = `(x)x1/γ , (2)

with γ = ξi/ξt > 0 and `(x) = `i{`t(x)x−ξt}{`t(x)}−1/ξi . Let u > 0 be fixed. Since `t is slowly varying,
`t(ux)(ux)−ξt = {1 + o(1)}u−ξt`t(x)x−ξt , and it follows from Beirlant et al. (2004), Theorem (2.3) (i),
that `i{`t(ux)(ux)−ξt}/`i{`t(x)x−ξt} → 1 as x → 0. Since also {`t(ux)}−1/ξi/{`t(x)}−1/ξi → 1 it
follows that `(ux)/`(x) → 1 as x → 0, so that `(x) is slowly varying as x → 0. Equation (1) hence
follows from the Karamata uniform convergence theorem.

(ii) In this case, Ḡ←t (x) = x∗ − `t(x)xξt with `t(x) slowly varying as x → 0 and Ḡi(x) =
`i(x

∗ − x)(x∗ − x)1/ξi , with `i(x
∗ − x) slowly varying as (x∗ − x) → 0, see Beirlant et al. (2004),

equation (2.11). Thus Ḡi{Ḡ←t (x)} = `i{`t(x)xξt}`t(x)1/ξixξt/ξi , and the proof may be completed as in
part (i). �

Proof of Theorem 2. The first assertion is a standard property of Poisson distributions. Fur-
ther, if (i) holds then we have that the numbers of H0 and H1 p-values smaller that αm are bi-
nomially distributed, and it follows from the Poisson limit theorem for binomial distributions that

||Qi − Po{πiFi(αm)}|| → 0 for i = 0, 1. If (ii) is satisfied then m0/m
P→ π0 as m→∞. Thus, for any

ε > 0, the probability that the number of false positives is smaller than the number of positives in an
extended sample of size (π0 + ε)m tends to one as m→∞, and therefore the number of false positives
is stochastically smaller than a binomial variable with m0 + εm trials and success probability F0(αm).
Similarly one gets an upper bound for the number of true positives, and corresponding lower bounds.
Using monotonicity we obtain ||Qi − Po{πiFi(αm)}|| → 0 for i = 0, 1. �

Derivation of equation (10) in the paper. As in the paper, but omitting the 0-indexes to simplify
the notation, let p1, p2, . . . pm be a sample of mutually independent observations from a distribution
F which satisfies (2), and hence, is such that F (x) = F (u)(x/u)1/γ for x ≤ u. Let N(x) denote
the number of pi-s which are less than or equal to x, so that N(x) has a binomial distribution with
parameters m and F (x). The empirical distribution function estimator of F (x) is given by

FE(x) = N(x)/m,

and our estimator of F (x) has the form

F (x) =
N(u)

m

(x
u

)1/γ̂
= FE(u)

(x
u

)1/γ̂
,

for γ̂ given by (7) of the paper, that is γ̂ = N(u)−1
∑

pi≤u− log(pi/u). We set γ̂ = 0 if N(u) = 0.

Since E{γ̂|N(u)} = γ for N(u) > 0, the law of total expectation gives

E(γ̂) = E [E {γ̂|N(u)}] = γpr {N(u) > 0} ,

and similarly
cov{FE(u), γ̂} = γF (u)pr {N(u) = 0} .

Further, we have that

var(γ̂) = E[var{γ̂|N(u)}] + var[E{γ̂|N(u)}]

= γ2
[
E

{
1N(u)>0

N(u)

}
+ var

{
1N(u)>0

}]
.
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Straightforward computation shows that if, say, m > 1000 and mF (u) > 10 then

E

{
1N(u)>0

N(u)

}
≈ 1

mF (u)

{
1 +

1

mF (u)

}
with an error of at most one unit in the second decimal, see Johnson et al. (1992), Section 4.11, equation
(3.92). Since pr {N(u) = 0} ≈ exp {−mF (u)} we can with even smaller error replace pr{N(u) = 0}
and var

{
1N(u)>0

}
by zero and pr{N(u) > 0} by one in the expressions above. If we strengthen the

assumptions further to, say, mF (u) > 35, then we get that E{1N(u)>0/N(u)} ≈ 1/{mF (u)}, with an
error less that 3%.

Standard central limit theory ensures that γ̂ and FE(x) are asymptotically normally distributed,
and according to the computations above we can hence with small error assume that the following
normal approximations hold,

γ̂ ≈ N [γ, γ2/{mF (u)}] and FE(x) ≈ N
[
F (x),

F (x){1− F (x)}
m

]
.

The delta-method now gives that F̂ (x) ≈ N
{
F (x), σ2

}
, where

σ2 =
F (x)2

mF (u)

[
1− F (u) +

1

γ2

{
log
(x
u

)}2
]
.

Using F (x) = F (u)(x/u)1/γ we can then write

var {FE(x)}

var
{
F̂ (x)

} =
(u
x

)1/γ [1− F (u)

1− F (x)
+

1

γ2
{log

(
x
u

)
}2

1− F (x)

]−1

≈
(u
x

)1/γ [
1 +

1

γ2

{
log
(u
x

)}2
]−1

,

where the approximation is accurate for small values of F (u). This concludes the derivation of (10).

3 Dependent p-values

This section provides the proof of Theorem 3 of the paper; presents sandwich estimators for dependent
p-values; discusses asymptotic normality for more complex dependence structures than those in The-
orem 3; and considers the conditional distribution of the number of false positives under dependence
and the clustering of p-values which may occur when there is high local dependence.

3.1 Proof of Theorem 3

For the convenience of the reader, we first repeat the notation and statement of Theorem 3, with more
details and explanations added, and then give the proof.

Omitting the subscript 0, suppose the p-values are observations of a stationary sequence {Pi} with
marginal distribution function F (x) which satisfies Condition (i) or (ii) of Theorem 1, so that by (2)

F (x) = `(x)x1/γ , (3)

with γ > 0 a constant which does not depend on x and `(x) slowly varying as x→ 0. For a sample of
size m from {Pi} and some small enough u = um the estimator (6) of F (x) for 0 ≤ x ≤ um is

F̂ (x) = FE(um)

(
x

um

)1/γ̂(um)

,
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where, writing 1i for the indicator function of the event Pi ≤ um, FE(um) = m−1
∑m

i=1 1i and γ̂(um) =∑m
i=1{− log (Pi/um) 1i}/

∑m
i=1 1i.

We use strong mixing to prove asymptotic normality of the estimators FE(um), γ̂(um) and F̂ (x)
as m → ∞ and x < um → 0. A major ingredient in the proof is blocking: the sequence is split up
into km = [m/rm] big blocks Bm,i = ((i − 1)rm, irm], 1 ≤ i ≤ km of length rm, and asymptotically
negligible separating small blocks of length `m are removed from the right ends of the big blocks, so
that the remainder of the big blocks are asymptotically independent as m→∞.

Define a function f as follows,

F̂ (x) = f

{
FE(um)

F (um)
, γ̃(um)

}
= F (um)

FE(um)

F (um)

(
x

um

)FE(um)

F (um)
1

γ̃(um)

,

where

γ̃(um) =
FE(um)

F (um)
γ̂ =

1

m

m∑
i=1

− log (Pi/um) 1i
F (um)

.

Here E{FE(um)/F (um)} = 1. Also, for γm = E{γ̃(um)} and using partial integration, (3), and
Karamata’s theorem, we obtain that

γm =
1

F (um)

∫ um

0
− log(x/um)dF (x) =

1

`(um)u
1/γ
m

∫ um

0
`(x)x1/γ−1dx→ γ. (4)

A first order Taylor expansion of f around f(1, γm) leads to the approximation

F̂ (x)− F (um)

(
x

um

)1/γm

≈ D
m∑
i=1

{Zm,i − E(Zm,i)} , (5)

where D = D(x/um, um) = −m−1 log (x/um) (x/um)1/γ F (um)γ−2,

Zm,i =
∑
j∈Bi

{− log(Pj/um) + C}F (um)−11j ,

and C = C(x/um, um) = −γm {1 + γm/ log(x/um)}.

To state the main theorem we need the some additional notation. Define

Z
(1)
m,i =

∑
j∈Bi

− log(Pj/um)F (um)−11j , Z
(2)
m,i =

∑
j∈Bi

F (um)−11j ,

and set σ2m = kmvar(Zm,1), σ
2
m,1 = kmvar(Z

(1)
m,1), and σ2m,2 = kmvar(Z

(2)
m,1). Introduce sample block

sums
Ẑi = Ẑm,i = D̂

∑
j∈Bi

{− log(Pj/um) + Ĉ}FE(um)−11j ,

where D̂ = −m−1 log (x/um) (x/um)1/γ̂ FE(um)γ̂−2 and Ĉ = −γ̂{1 + γ̂/ log (x/um)}. Further, set

s2m =

km∑
i=1

(Ẑi − Z̄)2, (6)

for Z̄ = k−1m
∑km

i=1 Ẑi. Finally, let {Bi,j} be the σ-algebra generated by Pi, . . . , Pj , and define the strong
mixing coefficients

αm,` = sup{|pr(AB)− pr(A)pr(B)| : A ∈ B1,k, B ∈ Bk+`,m, 1 ≤ k ≤ m− `}.
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Now introduce the following conditions:

C1: There exist integers `m < rm →∞ with rm = o(m) such that, for km = [m/rm],

km(αm,`m + `m/m)→ 0 and k−1m mF (um)→ 0.

C2: There exist integers wm > 1 such that

rm{F (um)σm}−1wm{mF (um)σ−1m e−wm + 1} → 0 and σm{mF (um)}−1 → 0.

Theorem 3.1. (i) Suppose C1, C2, and (3) hold, and that there exist constants 0 < k < K such that
k ≤ σm,i/σm ≤ K for i = 1, 2. Then for any fixed y ∈ (0, 1), as m→∞,

1

D(y, um)σm

{
F̂ (yum)− F (um)y1/γm

}
→d N(0, 1), (7)

and
m

σm,1
(γ̂ − γm)→d N(0, 1),

m

σm,2
{FE(um)− F (um)} →d N(0, 1). (8)

In particular γ̂ →pr γ and FE(um)/F (um)→pr 1.

(ii) If, in addition, kmvar(Z2
m,1)→ 0, then

1

sm

{
F̂ (yum)− F (um)y1/γm

}
→d N(0, 1). (9)

Proof. (i) We first show that, as m→∞,

σ−1m

 m∑
j=1

{− log(Pj/um) + C}F (um)−11j −m(γm + C)

→d N(0, 1), (10)

σ−1m,1

 m∑
j=1

{− log(Pj/um)F (um)−11j} −mγm

→d N(0, 1), (11)

and that

σ−1m,2


m∑
j=1

F (um)−11j −m

→d N(0, 1). (12)

It then follows from (11), (12), and k ≤ σm,i/σm ≤ K that the remainder terms in the first order
Taylor expansion (5) of (7) tend to zero in probability, and (7) then is a consequence of (10).

To prove (10) we show that the conditions of Theorem 6.4 of Rootzén et al. (1998) are satisfied by
Xj = − logPj , for n replaced by m and with un in the cited paper replaced by vm = − log um, and for
α1 = 1, α2 = C, φm,1(x) = F (um)−1xIj(x) and φm,2(x) = F (um)−1Ij(x), for Ij(x) = 1 if x ≥ vm and
0 otherwise. Thus, in particular, with the notation above, 1j = Ij{− log(Pj)}. For brevity, throughout
this proof, equations numbers, basic conditions, theorems, and lemmas refer to Rootzén et al. (1998).

It follows from F (x) = pr(P1 ≤ x) = `(x)x1/γ that

pr(X1 > x+ t)/pr(X1 > t) = F (e−xe−t)/F (e−t) = e−x/γ{1 + o(1)} as t→∞, (13)

and hence (6.1) holds. By C1 the basic assumptions hold, and, using Lemma 4.3, it follows that (4.7)
and hence also (2.4) is satisfied. The first part of C2 by straightforward calculation implies that (6.2)
and (6.3) hold. Since the other conditions of Theorem 6.4 are satisfied by assumption, this proves
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(10). Using the assumption k ≤ σm,i/σm ≤ K for i = 1, 2, the results (11) and (12) are established in
the same way.

The second part of C2 includes that m/σm → ∞, and then also m/σm,2 → ∞, and thus
F̂ (um)/F (um)→pr 1 is implied by (12). By (4) we have that γm → γ, and hence γ̂ = γ̃F (um)/FE(um)→pr

γ is a consequence of m/σm,2 →∞, the first part of (8), and F̂ (um)/F (um)→pr 1 .
(ii) Let s̃m be defined in the same way as sm but with Z instead of Ẑ. It follows from the last

assertion of (i) that D/D̂ →pr 1 and hence, in the proof, we without loss of generality assume that
D = D̂ = 1. According to Theorem 5.2

s̃−1m

 m∑
j=1

{− log(Pj/um) + C}F (um)−11j −m(γm + C)

→d N(0, 1),

and s̃m/σm → 1. Hence the result follows from the first order Taylor expansion used in part (i) above
if sm/s̃m →pr 1, or equivalently if (s2m − s̃2m)/σ2m →pr 0. Now, expanding squares and using Cauchy’s
inequality, that (a + b)2 ≤ 4(a2 + b2), and that the expectation of a sample variance is bounded by
the variance, this can be seen to hold if

{
(Ĉ − C)F (um)FE(um)−1

}2
σ−2m

km∑
i=1

∑
j∈Ji

F (um)−11j − k−1m
rmkm∑
j=1

F (um)−11j


2

→pr 0 (14)

and {
F (um)FE(um)−1 − 1

}2
σ−2m

km∑
i=1

∑
j∈Ji

{− log(Pj/um) + C}F (um)−11j (15)

−k−1m
rmkm∑
j=1

{− log(Pj/um) + C}F (um)−11j

2

→pr 0.

The proofs of (14) and (15) are almost identical, so we only consider (14). It follows from the
last part of (i) that (Ĉ − C)F (um)FE(um)−1 →pr 0. Further, again since the expectation of a sam-
ple variance is bounded by the variance, the expectation of the last part of (14) is bounded by
σ−2m kmvar(Zm,2) = σ−2m σ−2m,2 ≤ K, and hence it is tight, so that (14) holds. �

The conditions C1 - C2, even though they contain rather many components, are simple, and very
generally applicable, cf. the closely related papers Resnick and Starica (1997), Drees (2000), Drees
(2003), and Rootzén (2009).

3.2 Sandwich estimators and more complex dependence structures

Under the conditions of Theorem 3, γm → γ and F (yum) ∼ F (um)y1/γ and it then follows that
F (um)y1/γm ∼ F (yum). If further the bias F (yum)−F (um)y1/γ is of smaller order than σm, then the
the distribution of the estimation error F̂ (yu)−F (yu) may be approximated by aN(0, s2m)-distribution.
If the Pi were independent, this would be the delta method, and in the present dependent case this
kind of estimators are commonly referred to as sandwich estimators.

Dependence structures in high-throughput experiments may differ from stationary time series
dependence. For example, in the yeast genome screening experiment, 100 strains of yeast were grown
on each of two plates, and many such plates were grown sequentially in time. Clearly there is a risk
of dependence between p-values coming from the same pair of plates, or between p-values coming
from plates grown in, say, the same day, or from genes that are functionally related. We will, without
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proofs, indicate how the results above may be adapted to such complex situations where dependence
is not just sequential in time. In particular, this provides sandwich estimators also for such situations.

The key is to divide the p-values up into asymptotically independent blocks, where the blocking
may be determined by the structure of the experiment in a much more sophisticated way than in
the stationary time series setting considered in Theorem 3.1. As before with km = [m/rm], assume
that the p-values are split up into blocks Bi, where i = 1, . . . , km, of rm p-values, and that `m
p-values are removed from each block to form new blocks B′i consisting of the remaining parts of
the blocks. Let {B−i } and {B+i } be the σ-algebras generated by Pj , j ∈ B′k, k = 1, . . . , i and by
Pj , j ∈ B′k, k = i, . . . , km, respectively, and define strong mixing coefficients by

αm,` = sup{|pr(AB)− pr(A)pr(B)| : A ∈ B−i , B ∈ B
+
i+1, 1 ≤ i ≤ km − 1}.

With Zm,i, Z
(1)
m,i and Z

(2)
m,i defined as above, set

σm =

km∑
i=1

var(Zm,i), σm,i =

km∑
i=1

var(Z
(i)
m,i), i = 1, 2,

and assume that sup{var(Z2
m,i), i = 1, . . . , km}/ inf{var(Z2

m,i), i = 1, . . . , km} → 1, and that Z
(1)
m,i and

Z
(2)
m,i satisfy the corresponding conditions. Instead of kmvar(Z2

m)→ 0 assume that km sup{var(Z2
m,i), i =

1, . . . , km} → 0, and further assume that all p-values have the same one-dimensional marginal distri-
bution, with F (x) = `(x)x1/γ .

With this new notation and new assumptions, Theorem 3.1 still holds. Thus the sandwich estimator
can be used also for much more general dependence structures than time series dependence.

3.3 The conditional distribution of the number of false positives under dependence

In a stationary time series setting, the quite general Leadbetter (1974) conditions D(αm) and D′(αm)
are commonly used to obtain Poisson convergence, as needed for Theorem 2. D(αm) is expected to
hold for any reasonable experiment. However D′(αm) holds only in situations where small p-values
do not cluster. If clustering does occur, then Theorem 3.1 of Rootzén et al. (1998) gives more general
conditions which ensure that there still exist a limiting distribution, but this distribution is now a
compound Poisson process. Estimation of the compounding probabilities is often uncertain, and in
such situations one might not be able to estimate the full conditional distribution of the number of
false positives, but only the expected number of false positives.

Clustering of p-values which could indicate dependence within blocks can be investigated infor-
mally by inspection of the samples, and there is also a large literature on formal estimation of the
amount of clustering, as measured by the so-called Extremal Index, see e.g. Beirlant et al. (2004),
Section 10.3.2. However, the issue is somewhat delicate: clustering caused by local dependence will
violate the asymptotic Poisson distributions, but clusters of very small p-values may also be caused
by non-null experiments occurring at neighboring locations, and this would then not contradict an
asymptotic Poisson distribution. The latter situation, for example, is expected to occur in the brain
scan experiment discussed below.

The Leadbetter conditions may also be extended to more general dependence structures. With
the blocking Bi, B

′
i as in the discussion of the effect on complex dependence structures on F̂ (x), let

M̄i = min{Pj , j ∈ B′k, 1 ≤ k ≤ i} and Mi = min{Pj , j ∈ B′k} and introduce the following conditions.

D1: The blocking satisfies `m = o(m) and, for m→∞,

sup
{
|pr(M̄i ≤ αm,Mi+1 ≤ αm)− pr(M̄i ≤ αm)pr(Mi+1 ≤ αm)| i = 1, . . . , km − 1

}
→ 0.
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D2: The blocking satisfies that, as m→∞,

km∑
i=1

∑
j 6=k, j,k∈Bi

pr (Pj ≤ αm, Pk ≤ αm)→ 0.

If the Pj form a stationary time series, then D1 is implied by D(αm) and D2 by D′(αm).
Following the line of argument in Leadbetter (1974) it can be shown that if D1 and D2 hold and

mF (αm) → τ > 0, then the number of P ′js which are smaller than αm is asymptotically Poisson
distributed.

4 Association mapping in Arabidopsis.

Zhao et al. (2007) study 95 Arabidopsis Thaliana samples, with measurements of flowering-related
phenotypes together with genotypes in the form of over 900 short sequenced fragments, distributed
throughout the genome. The goal was association mapping, that is identification of regions of the
genome where individuals who are phenotypically similar are also unusually closely genetically related.
A problem is that spurious correlations may arise if the population is structured so that members of
a subgroup, say, samples obtained from a specific geographical area, tend to be closely related. One
main thrust of the paper was to evaluate 9 different statistical methods to remove such spurious
correlations. But of course the ultimate goal is to identify interesting genes.
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Figure 1. Goodness of fit and parameter stability plots for the KW analysis of the JIC4W data set
Left: Empirical distribution function. Dashed line is the uniform distribution. Middle: Empirical distribution

function for p ≤ 0.001 (99 values). Solid line is (9) of the paper estimated using u = 0.001. Dotted lines are

95% pointwise confidence intervals. Note that x-axis scale is stretched 10 times. Right: pFDR at α = 0.0001 as

function of the threshold u, for π0 = 1. Dotted lines are 95% pointwise confidence intervals.

Here we only consider the SNP (Single Nucleotide Polymorphism) data, essentially obtained from
re-sequencing, and one phenotype, the one called JIC4W, which we choose since it was of special inter-
est in the paper. Further, we only display results for two of the statistical methods, the KW method
which just consisted in making Kruskal-Wallis tests without correction for population structure, and a
method called Q+K which may have been the most successful of the 9 methods studied. The number
of tests was 3745.

For the KW method, the maximum likelihood estimators using the mixture model (8) and method
(iii) of the paper, with u = 0.01, were p̂ = 0.4, γ̂0 = 1.2, and γ̂1 = 2.6. However, the 95% confidence
interval for p was the entire interval (0, 1). Method (ii), that is fixing γ0 to 1, for u = 0.01 gave
p̂ = 0.27 and γ̂1 = 2.40, with 95% confidence intervals (0.00, 0.54), and (1.85, 2.96). Confidence
intervals obtained by fitting (8) were very wide.

Instead, Figures 1 and 2 show that the model (9) fits both the Kruskal-Wallis and the Q+K p-
values well (Kolmogorov-Smirnov p-values 0.43 and 0.38). The estimate of pFDR for α = 0.0001,
with 95% confidence intervals, for the Kruskal-Wallis test was 0.013 ± 0.0035, and for the Q+K the
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estimate was 0.15±0.14, that is more than 11 times bigger. Both these numbers assume that the true
null distribution is the uniform distribution. Zhao et al. (2007) argue that most of the Kruskal-Wallis
p-values are spurious. We also did the same analysis for the other statistical tests studied by Zhao et
al. For most, but not all of them, (11) gave a good fit. Of course the quality of the fit also depended
on the choice of u.
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Figure 2. Goodness of fit and parameter stability plots for the Q+K analysis of the JIC4W data set
Left: Empirical distribution function. Dashed line is the uniform distribution. Middle: Empirical distribution

function for p ≤ 0.01 (76 values). Solid line is (11) estimated using u = 0.01. Dotted lines are 95% pointwise

confidence intervals. Right: p-FDR at α = 0.0001 as function of the threshold u, for π0 = 1. Dotted lines are

95% pointwise confidence intervals.

Again, to illustrate the gain in efficiency from using the estimates from Section 3, SmartTail
estimated that var{FE(0.0001)}/var{F̂ (0.0001)} was 1.9 for the KW method with u = 0.001 and 1.2
for the Q+K method and u = 0.01 (the γ-values were 2.6 and 1.4, respectively).

5 fMRI brain scan experiment

Taylor and Worsley (2006) study the Functional Image Analysis Contest data set which contains results
from an fMRI experiment aimed at understanding the language network in the human brain. Here
we use the Block Experiment, Dehaene-Lambertz et al. (2006), in which 16 subjects were instructed
to lie still in a scanner with eyes closed and to listen attentively to blocks of 6 sentences, either
different ones or the same sentence, and either read by the same speaker or by different speakers.
Each subject was asked to participate in two runs, with 16 blocks presented in each run. In Taylor
and Worsley (2006), for each run and each voxel in the brain scans, the data was used to study the
significance of two contrasts, different minus same sentence and different minus same speaker, and
their interaction. Roughly 35, 000 voxels per subject were used. For each voxel in each subject and
each run sophisticated preprocessing was used to construct 3 t-test quantities. One subject dropped
out, and one only completed one run, so the result was (15 × 2 + 1) × 3 = 93 sets of roughly 35, 000
t-test quantities.

To study the fit of equation (9) we transformed these t-values to p-values using a t40-distribution,
see Taylor and Worsley (2006). For each of the 93 resulting data sets we performed a Kolmogorov-
Smirnov test of the fit of the model (9) for the p-values which were smaller than the threshold u = 0.01.
The smallest number of p-values less than 0.01 in any of these data sets was 117, and the largest number
was 973.

Figure 3 shows that the distribution of the 93 goodness-of-fit p-values were somewhat skewed
towards smaller values, as compared with the uniform distribution. However, the deviation from
uniformity is small, and the overall impression is that (9) fits well.
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Figure 3. Empirical cumulative distribution function of the Kolmogorov-Smirnov p-values from 93
fMRI brain scan data sets.

In fact, even for the two data sets where (9) was clearly rejected, the Kolmogorov-Smirnov plots
showed that the deviations from the model were quite moderate.

References

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes, Theory and Applications.
Wiley, Chichester, 2004.

G. Dehaene-Lambertz, S. Dehaene, J.-L. Anton, A. Campagne, A. Jobert, D. LeBihan, M. Sigman,
C. Pallier, and J.-B. Poline. Functional segregation of cortical language areas by sentence repetition.
Human Brain Mapping, 27(5):360–371, 2006.

H. Drees. Weighted approximations of tail processes for β-mixing random variables. Ann. Appl.
Probab., 10(4):1274–1301, 2000.

H. Drees. Extreme quantile extimation for dependent dat, with application to finance. Bernoulli, 9
(1):617–657, 2003.

N.L. Johnson, S. Kotz, and A.W. Kemp. Univariate discrete distributions. Wiley, New York, 1992.
M.R. Leadbetter. On extreme values in stationary sequences. Probability Theory and Related Fields,

28(4):289–303, 1974.
S. Resnick and C. Starica. Asymptotic behavior of hills estimator for autoregressive data. Comm.

Statist. Stochastic Models, 13(4):703–721, 1997.
H. Rootzén. Weak convergence of the tail empirical process for dependent sequences. Stochastic

Process. Appl., 119(2):468–490, 2009.
H. Rootzén, M.R. Leadbetter, and L. de Haan. On the distribution of tail array sums for strongly

mixing stationary sequence. Ann. Appl. Probab., 8(3):868–885, 1998.
SmartTail, 2015. url: www.smarttail.se - Software for the analysis of false discovery rates in high-

throughput screening experiments.
J.E. Taylor and K.J. Worsley. Inference for magnitudes and delays of response in the FIAC data using

BRAINSTAT/FMRISTAT. Human Brain Mapping, 27:434–441, 2006.
K. Zhao, M.J. Aranzana, S. Kim, C. Lister, C. Shindo, C. Tang, C. Toomajian, H. Zheng, C. Dean,

P. Marjoram, and M. Nordborg. An Arabidopsis example of association mapping in structured
samples. PLoS Genet, 3(1):71–82, 2007.

D. Zholud. Tail approximations for the student t-, F -, and Welch statistics for non-normal and not
necessarily i.i.d. random variables. Bernoulli, 20(4):2102–2130, 2014.

This is an author-created version of the supplement which can be used for educational or research purposes, and to create derivative works, subject
to appropriate attribution and non-commercial exploitation. The latest version is available at www.zholud.com.

Copyright c© 2018 by Dmitrii Zholud
www.zholud.com 10

http://www.zholud.com/articles/supplementary-materials/high-throughput-screening/Efficient-estimation-of-the-number-of-false-positives-in-high-throughput-screening-[Supplementary-Materials].pdf
http://www.zholud.com
http://www.zholud.com

	SmartTail
	Proofs of the basic results
	Dependent p-values
	Proof of Theorem 3
	Sandwich estimators and more complex dependence structures
	The conditional distribution of the number of false positives under dependence

	Association mapping in Arabidopsis.
	fMRI brain scan experiment

