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Extremes of Shepp statistics for the Wiener process

Dmitrii Zholud∗

Abstract

Define Y (t) = max
0≤s≤1

W (t + s) −W (t), where W (·) is the standard Wiener process. We study

the maximum of Y up to time T : MT = max
0≤t≤T

Y (t) and determine an asymptotic expression for

P (MT > u) when u → ∞. Further we establish the limiting Gumbel distribution of MT when

T →∞ and present the corresponding normalization sequence.
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1 Introduction

First, we introduce two different techniques used in the asymptotic theory of Gaussian processes and
fields. For a Gaussian process Z(t), consider asymptotic behavior of the probability

P

(
max
[0,T ]

Z(t) > u

)
, u→∞. (1)

In the case when Z(t) is a stationary Gaussian process with a covariance function r(t) such that
r(t)− r(0) is a regularly varying function of index α for t→ 0, the exact asymptotic forms of (1) were
given by Pickands, see Pickands (1969a,b).

In the non-stationary case there are a number of results for Gaussian processes with a unique
point of maximum variance, see e.g. Berman (1985), Hüsler (1990) and related papers. When Z(t) is
a Gaussian process with continuous paths, zero mean and nonconstant variance, and there is a unique
fixed point of maximum variance t0 in the interval [0, T ], the asymptotic behavior of probability in
(1) is known. The theory sketched out above is described in detail in Piterbarg (1996).

Next, define X(t, s) = W (t + s) −W (t) and Y (t) = max
0≤s≤1

X(t, s), for W (·) the standard Wiener

process. Let MT = max
[0,T ]

Y (t) be the maximum up to time T of Y (t). The aim of this paper is to find

the asymptotic behavior of P (MT > u), the probability of high level excursions of Y (t) as u → ∞
and to obtain the limiting distribution of MT when T →∞.
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For the first task it is crucial to use a representation of MT as a maximum of the Gaussian field
X(t, s) over rectangle [0, T ]× [0, 1]:

MT = max
[0,T ]×[0,1]

X(t, s).

Since for fixed s, X(·, s) is a stationary process, and for fixed t, X(t, ·) is a process with a unique point
of maximum variance, the asymptotic behavior is obtained by combining standard techniques for the
corresponding cases. Let ψ(u) be the tail of the standard normal distribution function. The following
result and its proof, as well as the expression for the constant H are given in Section 2.

Theorem 1.1. If Tu2 →∞ and Tu2ψ(u)→ 0 when u→∞, then

P (MT > u) = HTu2ψ(u)(1 + o(1)).

When the asymptotic behavior of the tail of distribution of MT is known, we find a limiting dis-
tribution of MT when T → ∞. In this case it is essential to use the representation of MT as
a maximum up to time T of stationary process Y (t). When |t1 − t2| > 1, the random variables
Y (t1) and Y (t2) are independent . The method of establishing the limit theorem is common. Intro-
duce a partition of [0, T ] into long blocks Ai = [i(S + 1), i(S + 1) + S) of length S, and short blocks

Bi = [i(S + 1) + S, (i+ 1)(S + 1)) of length 1 such that [0, T ] =
n⋃
i=0

(Ai ∪Bi). Then define a sequence

of independent identically distributed random variables (i.i.d. r.v.) Yi = max
Ai

Y (t), i = 1, 2, .. Letting

S to infinity and following the proof of J. Pickands theorem for max{Y1, Y2, ...}, see Leadbetter et al.
(1983), the only thing left is to show that random variables Ȳi = maxY (t) over Bi give negligible con-
tributions to the limiting distribution of the maximum MT = max{Y1, Ȳ1, Y2, Ȳ2, Y3, Ȳ3...}. However,
this idea is extended to obtain a more general result, see Lemma 3.1. It will be used when building
limit theorems for the Shepp statistic for a Gaussian random walk, see Zholud (2009). As a corollary
of the lemma stated in Section 3 we obtain the limiting Gumbel distribution for MT , when T →∞.

Theorem 1.2. For any fixed x and T →∞, the following relation holds:

P

(
max

(t,s)∈[0,T ]×[0,1]
aT (W (t+ s)−W (t)− bT ) ≤ x

)
= e−e

−x
+ o(1),

where

aT =
√

2 lnT , bT =
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)
√

2 lnT
.

A similar result for the standardized Wiener process increments is obtained in Kabluchko (2007).
There are also a number of works about strong laws for the increments of the Wiener process, see e.g.
Csörgő and Révész (1979), Frolov (2005).

One of the applications of the result derived in this paper is given in Zholud (2009). Let (ξi, i ≥ 1)

be standard normal random variables, and Sk be the corresponding random walk, Sk =
k∑
i=1

ξi, S0 = 0.

Define a random variable ζ
(N)
L (k) = 1√

N
(Sk+L−1 − Sk−1). Asymptotic behavior of the probability

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
,

when u → ∞, N → ∞ in some synchronized way is then examined. For fixed u, owing to the weak
convergence of a random walk to the Wiener process,

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
= P (MT > u) (1 + o(1)) , N →∞.

Paper Zholud (2009) shows that this equation also holds when u→∞ and u/
√
N → 0.
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2 Asymptotic behavior of the distribution tail of MT

In this section we find the asymptotic behavior of the probability

P (MT > u) = P

(
max
0≤t≤T
0≤s≤1

W (t+ s)−W (t) > u

)
, (2)

when u → ∞ and T → ∞ in an appropriate way. As before, we denote X(t, s) = W (t + s) −W (t).
The proof is divided into two steps.

First, for any positive constant B we focus on the asymptotic behavior of maximum of X over a
thin layer [0, T ]× [1− Bu−2, 1]. It will be shown that within this area and assuming that u is large,
X(t, s) and X(t, 1) behave in a similar way, and it is possible to determine the asymptotic behavior
using the standard technique for stationary processes.

Second, knowing the asymptotic behavior of the maximum of X over the area of its maximum
variance, we will show that the maximum over the complementary set [0, T ] × [0, 1 − Bu−2] gives
neglible contribution to the probability in (2).

The proof of the first part is based on the Double Sum Method: the lemma below is the analog
of Lemma 6.1, Piterbarg (1996). To proceed, let A and B be any positive constants and denote
p = Au−2, q = Bu−2 and A0(u) = [0, p]× [1− q, 1]. Although it is possible to obtain a representation
similar to what we get in Lemma 2.1 by repeating the proof of Lemma 6.1, Piterbarg (1996), our proof
does not follow the standard procedure. Instead of passing on to the family of conditional distributions
as in Piterbarg (1996), we extract the common part of the increment X(t, s) for all (t, s) ∈ A0(u) and
use independence of the Wiener process increments.

Lemma 2.1. Let u→∞. Then

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= HB

A

1√
2πu

e−
u2

2 (1 + o(1)),

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
.

Proof: We have that since 1− q > p for large u,

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= P

(
W (1− q)−W (p) + max

A0(u)
W (t+ s)−W (1− q) +W (p)−W (t) > u

)
,

and by stationarity and independence of the Wiener process increments W (t + s) −W (1 − q) and
W (p)−W (t), the probability above is equal to

P

(
ξ + max

A0(u)
W (t+ s− (1− q) + p)−W (t) > u

)
= P

(
ξ + max

0≤t≤p
0≤s≤q

W (t+ s+ p)−W (t) > u

)
,

where random variable ξ is normally distributed with zero mean, variance σ2 = 1 − p − q and is
independent of the expression inside the maximum sign.
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Thus,

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= 1√

2πσ

∞∫
−∞

e−
v2

2σ2 P

(
max
0≤t≤p
0≤s≤q

W (t+ s+ p)−W (t) > u− v

)
dv.

After the change of variables v = u− w
u , the last expression equals

σ−1
√
2πu

∞∫
−∞

e−
(u−wu )2

2σ2 P

(
max
0≤t≤p
0≤s≤q

u(W (t+ s+ p)−W (t)) > w

)
dw

=
e−

u2

2σ2

√
2πσu

∞∫
−∞

e−
w2/u2

2σ2 e
w
σ2 P

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t) > w

)
dw.

Next, by the dominated convergence theorem, which follows from the upper estimate of the probability
under the integral sign (see Borel’s theorem, Piterbarg (1996), p.13), and relations σ2 → 1 and

e−
u2

2σ2 = e−
u2

2
(1+p+q+o(u−2))(1 + o(1)) = e−

u2

2 e−
A+B

2 (1 + o(1)),

when u→∞, we obtain the desired representation. �

Corollary 2.1.1.
1) HB

A is nondecreasing with respect to the parameters A and B.
2) HB

A1+A2
≤ HB

A1
+HB

A2
.

3) HB
A ≤ AHB

1 , for any integer A.

Our next aim is to move on from the rectangle [0, Au−2]× [1− Bu−2, 1] to the layer [0, T ]× [1−
Bu−2, 1]. We use Lemma 2.1 and the Bonferroni inequality to obtain estimates of the probability of
high level excursions of the maximum of X. Then we show that estimates from below and from above
are asymptotically equivalent.

Let Ar(u) = [rAu−2, (r+ 1)Au−2]× [1−Bu−2, 1]. For ease of notation we suppress dependence on u.
Using stationarity of X(t, s) with respect to t, we obtain that

(Tu
2

A + 1)P

(
max

(t,s)∈A0

X(t, s) > u

)
≥ P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

 ≥
≥ (Tu

2

A − 1)P

(
max

(t,s)∈A0

X(t, s) > u

)
−

−
∑

0≤l,m≤Tu2
A

+1

l6=m

P

(
max

(t,s)∈Al
X(t, s) > u, max

(t,s)∈Am
X(t, s) > u

)
. (3)

Let pl,m denote the summands in the last sum in (3). The sum, owing to stationarity, does not exceed

2

(
Tu2

A
+ 1

) Tu2

A
+1∑

n=1

p0,n. (4)
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Estimating the probabilities p0,n from above, we will show that the sum (4) is negligible, and thus the
upper and lower estimates in (3) are asymptotically equivalent.

The estimates are obtained in slightly different ways, in the same manner as in Lemma 7.1,
Piterbarg (1996). The next lemma is a modification of Lemma 6.3, Piterbarg (1996).

Lemma 2.2. There exists an absolute constant C such that inequality

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)e−

(r−1)A
4

holds for any A,B any 1 < r ≤ 1 + u2

A , and for any u, u ≥ u0,

u0 = inf

{
u : e−4Au

−2 ≤ 1− 2Au−2 , Bu−2 ≤ 1

2

}
.

Proof: The Gaussian field X(t, s) has zero mean, is stationary in t, and its covariance function is

K(t, s; t1, s1) = mes
(

[t, t+ s]
⋂

[t1, t1 + s1]
)
. (5)

Consequently, a global Hölder condition holds, that is,

E (X(t, s)−X(t1, s1))
2 ≤ 2(|s− s1|+ |t− t1|). (6)

Introducing Y (v,w) = X(v) +X(w), where v = (t, s) and w = (t1, s1), we obtain

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ P

(
max
A0×Ar

Y (v,w) > 2u

)
.

Using (5), (6) and restrictions on r and u it is straightforward to derive bounds on the variance of
Y (v,w) and then to obtain an estimate from below of the covariance function of normalized field
Y ∗(v,w), see Lemma 6.3, Piterbarg (1996). Further steps repeat the proof of the lemma. �

Corollary 2.2.1. When r > 1 + u2

A and u ≥ u0 the following inequality holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)2.

Indeed, for r > 1 + u2

A the events inside the probability are independent and this finishes the proof.

Corollary 2.2.2. When r = 1 and u ≥ u0, the following inequality holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤
(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
ψ(u).

The proof follows Lemma 7.1 on p.107 in Piterbarg (1996). We are now ready to estimate (4) from
above. Since

Tu2

A
+1∑

n=1

p0,n = p0,1 +

u2

A
+1∑

n=2

p0,n +

Tu2

A
+1∑

n=u2

A
+2

p0,n

and estimating the first summand by using Corollary 2.2.2, the second using Lemma 2.2 and the last
using Corollary 2.2.1, we obtain
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(4) ≤ 2
(
Tu2

A + 1
)
ψ(u)

{(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
+

+ C(AB)2
∞∑
n=2

e−
1
4
(n−1)A + Tu2

A C(AB)2ψ(u)

}
.

Assuming that Tu2 → ∞ and Tu2ψ(u) → 0 it follows from (3), (4), Lemma 2.1 and the estimate of
(4) above that

lim
u→∞

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

/Tu2ψ(u) ≤ A−1HB
A

and (7)

lim
u→∞

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

/Tu2ψ(u) ≥ (A′)−1HB
A′ −

− 2 C
A′

{(
(A′B)2e−

√
A′
4 +

√
A′+1
C HB

1

)
+ (A′B)2

∞∑
n=2

e−
(n−1)A′

4

}
.

Thus, noticing that the expression in the last line tends to zero when A′ →∞, and applying Corollary
2.1.1 3), we see that

lim
A→∞

A−1HB
A ≤ lim

A′→∞
(A′)−1HB

A′ ≤ HB
1 <∞.

Finally, we want to show that the limit

HB = lim
A→∞

A−1HB
A , 0 < HB ≤ HB

1 <∞, (8)

that exists as a consequence of the estimate above, is positive. This is done by following the proof
of D.16 in Piterbarg (1996) when considering the probability of high level excursion over the subset
D =

⋃
i
A2i ∩ [0, T ]× [0, 1].

Thus, assuming A and A′ in (7) tend to infinity and applying (8), we obtain the asymptotic
behavior of the probability of high level excursion of the maximum of X(t, s) over the upper layer
[0, T ]× [1−Bu−2, 1]:

Lemma 2.3. Assuming Tu2 →∞ and Tu2ψ(u)→ 0, the following equality holds

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

 = HBTu2ψ(u)(1 + o(1)).

Below we give the second part of the proof. It shows that the asymptotic behavior of the probability
of the high level excursion of the maximum of X(t, s) over the upper layer, which corresponds to the
area of the maximum variance of the field, gives the main contribution to (2).

Let Bn(u) = [0, T ]× [1− (n+ 1)Bu−2, 1− nBu−2] and assume that the conditions Tu2 →∞ and
Tu2ψ(u)→ 0 are satisfied. As before, we suppress the dependence of Bn on u and continue with

Lemma 2.4. Starting from large enough values of u, if nBu−2 ≤ 1
2 , then

P

(
max

(t,s)∈Bn
X(t, s) > u

)
≤ 4H2Be−

1
2
nBTu2ψ(u)(1 + c(u)),

where c(u)→ 0, when u→∞.
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Proof: Normalizing by the maximum standard deviation of X(t, s) over Bn we get

P

(
max

(t,s)∈Bn
X(t, s) > u

)
= P

(
max

(t,s)∈Bn

X(t,s)√
1−nBu−2

> u√
1−nBu−2

)

= P

 max
0≤t≤T/(1−nBu−2)

1− Bu−2

1−nBu−2≤s≤1

X(t, s) > u√
1−nBu−2



≤ P

 max
0≤t≤2T

1−2Bu−2≤s≤1

X(t, s) > u√
1−nBu−2

 .

The expression on the right-hand side satisfies all the conditions of Lemma 2.3, and for large enough
u inequality ψ( u√

1−nBu−2
) ≤ 2ψ(u)e−

1
2
nB holds uniformly in n. �

Lemma 2.5. If nBu−2 > 1
2 , then

P

 max
(t,s)∈[0,T ]×[0,1]

∖ n⋃
i=0

Bi

X(t, s) > u

 ≤ CTu4ψ(
√

2u).

Proof: Expanding the set under the maximum sign, we get

P

 max
(t,s)∈[0,T ]×[0,1]

∖ n⋃
i=0

Bi

X(t, s) > u

 ≤ P

 max
0≤t≤T
0≤s≤ 1

2

X(t, s) > u

 .

The maximum of the variance of X(t, s) over the set [0, T ] × [0, 12 ] equals 1
2 . Theorem 8.1, Piterbarg

(1996) finishes the proof. �

Now follows the proof of Theorem 1.1: Lemmas 2.3, 2.4 and 2.5 imply that

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t, s) > u

)/
Tu2ψ(u) ≥ lim

u→∞

P

(
max

(t,s)∈B0

X(t,s)>u

)
Tu2ψ(u)

= HB

and

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t, s) > u

)/
Tu2ψ(u) ≤ lim

u→∞
1

Tu2ψ(u)

[
P

(
max

(t,s)∈B0

X(t, s) > u

)

+

u2

2B∑
n=1

P

(
max

(t,s)∈Bn
X(t, s) > u

)
+ P

(
max

(t,s)∈B̂
X(t, s) > u

)
≤ HB′ + 4H2B′ ×

∞∑
n=1

e−
1
2
nB′ ,

where B̂ denotes [0, T ] × [0, 1]
∖ u2

2B
+1⋃

n=0
Bn. Now note that the constant HB = lim

A→∞
A−1HB

A is non-

decreasing with respect to the parameter B, and the last inequalities show that it is bounded from
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www.zholud.com

http://www.zholud.com


Dmitrii Zholud

above. Thus, lim
B→∞

HB = H, say, exists, finite and positive, and lim
B′→∞

HB′ + 4H2B′ ×
∞∑
n=1

e−
1
2
nB′ also

equals H. �

3 Limit theorem for MT

In this section we consider the case where T goes to infinity, and we obtain the limit distribution
of (MT − aT )/bT for the appropriate normalization functions aT and bT . First we prove a general
lemma, which can serve as a template for obtaining limiting theorems not only for random fields,
but for a family of fields as well. We assume that the specific asymptotic behavior of the tail of the
distribution of the maximum of some field takes place and that this asymptotic behavior is defined by
an asymptotic relation between threshold u, parameter S that defines the set over which the maximum
is taken, and parameter N discussed below. The condition that defines the asymptotic behavior will
be denoted by, say, D(u,N, S). The following lemma shows that knowing asymptotic behavior under
D(u,N, S) we can derive a new condition involving T and N such that if it holds when T goes to
infinity, MT has limiting Gumbel distribution.

Lemma 3.1. Assume that

1) XN (t, s) N = 1, 2... is a family of fields stationary with respect to the parameter t, and defined on
the set [0,∞)× [0, 1].

2) For any N , any t, t1 such that |t− t1| > 1 and any s, s1 ∈ [0, 1], the random variables XN (t, s) and
XN (t1, s1) are independent.

3) By D(u,N, S) we refer to some logical statement that involves variables u,N, S and such that
if D(u,N, S) holds then the following asymptotic behavior of the tail of the distribution of a maximum
of XN (t, s) over the set DS = [0, S]× [0, 1] takes place:

P

(
max
DS

XN (t, s) > u

)
∼ SF (u,N) (9)

for some function F (u,N). We also demand that if D(u,N, 1), then (9) holds for S ≡ 1.

4)Let T →∞ and suppose there exist appropriate normalizing functions aT and bT such that

lim
T→∞

(N→∞)

TF (uT , N) = e−x

for any fixed x, where uT = bT + x
aT

. Functions aT and bT may also depend on N .

5)Let S = S(T ) be such a function that S →∞ and n = T
S+1 →∞ when T →∞.

Then, if D(uT , N, 1) and D(uT , N, S(T )) hold,

P

(
max
DT

XN (t, s) > uT

)
→ 1− e−e−x . (10)

Proof: Let us introduce a partition [0, T ] =
n⋃
i=0

(Ai ∪ Bi), with Ai = [i(S + 1), i(S + 1) + S] and

Bi = [i(S + 1) + S, (i+ 1)(S + 1)] so that |Ai| = S and |Bi| = 1 for all i.

Copyright c© 2017 by Dmitrii Zholud
www.zholud.com 8

http://www.zholud.com


Extremes of Wiener Process Increments

For the expression on the left-hand side of (10) we have that

P

(
max
DT

XN (t, s) ≤ uT
)

= 1−P

(
n⋃
i=0

{
max

Ai×[0,1]
XN (t, s) > uT ∪ max

Bi×[0,1]
XN (t, s) > uT

})
.

Applying stationarity of XN (t, s) with respect to t we obtain the following estimate

1− nP
(

max
[0,1]2

XN (t, s) > uT

)
−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
≤

≤ P

(
max
DT

XN (t, s) ≤ uT
)
≤ 1−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
. (11)

Here the term nP

(
max
[0,1]2

XN (t, s) > uT

)
is estimated using D(uT , N, 1) and 3) and, for penultimate

equality, 4)

nP

(
max
[0,1]2

XN (t, s) > uT

)
= nF (uT , N)(1 + o(1)) = TF (uT ,N)

S+1 (1 + o(1)) = e−x(1+o(1))
S+1 = o(1).

Using the fact that max
Ai×[0,1]

XN (t, s) and max
Aj×[0,1]

XN (t, s) are independent for i 6= j, see 2), and,

again, stationarity, we estimate the expression on the right-hand side of (11) using D(uT , N, S(T ))
and 3) in the third step, and 4) and 5) in the fifth, we get

1−P
(

n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
=

n∏
i=0

P

(
max

Ai×[0,1]
XN (t, s) ≤ uT

)
=

(
1−P

(
max

A0×[0,1]
XN (t, s) > uT

))n

= (1− SF (uT , N))n = en ln(1−SF (uT ,N)) = e−nSF (uT ,N)(1+o(SF (uT ,N))) = e−e
−x

(1 + o(1)).

It therefore follows from (11) that

e−e
−x

(1 + o(1)) + o(1) ≤ P

(
max
DT

XN (t, s) ≤ uT
)
≤ e−e−x(1 + o(1)),

and this finishes the proof. �

Corollary 3.1.1 (The Wiener process).

Put XN (t, s) ≡ W (t + s) − W (t). We say that D(u,N, S) holds if and only if Su2 → ∞ and
Su2ψ(u)→ 0 , u→∞ . Thus, conditions 1), 2) and 3) of the lemma are satisfied by Theorem 1.1.

It is easy to verify that Condition 4) is satisfied for

uT =
x√

2 lnT
+
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)
√

2 lnT
.

In 5) we set S(T ) =
√
T . Condition D(uT , N, 1) becomes equivalent to uT → ∞ that is equivalent to

T →∞ owing to our choice of uT . Finally, using 3) it is easy to show that

S(T )u2Tψ(uT ) = S(T )/T × TF (uT , N) = ee
−x

(1 + o(1))/
√
T = o(1).

Thus D(uT , N, S) is equivalent to T →∞ and Theorem 1.2 holds.
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