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Tail estimation for window-censored processes

Holger Rootzén∗ and Dmitrii Zholud†

Abstract

This paper develops methods to estimate the tail and full distribution of the lengths of the
0-intervals in a continuous time stationary ergodic stochastic process which takes the values 0 and
1 in alternating intervals. The setting is that each of many such 0-1 processes have been observed
during a short time window. Thus the observed 0-intervals could be non-censored, right-censored,
left-censored or doubly-censored, and the lengths of 0-intervals which are ongoing at the beginning
of the observation window have a length-biased distribution. We exhibit parametric conditional
maximum likelihood estimators for the full distribution, develop maximum likelihood tail estimation
methods based on a semi-parametric generalized Pareto model, and propose goodness of fit plots.
Finite sample properties are studied by simulation, and asymptotic normality is established for
the most important case. The methods are applied to estimation of the length of off-road glances
in the 100-car study, a big naturalistic driving experiment. Supplementary materials that include
MatLab code for the estimation routines and a simulation study are available online.

Keywords: Generalized Pareto distribution; Length-biased distribution; Off-road glance; Tail esti-
mation; Traffic safety; 100-car naturalistic driving study.

1 Introduction

Let X(t) be a stationary ergodic stochastic process which takes the values 0 and 1 in alternating
intervals, as illustrated in Figure 1. Here 1 could mean that a technical system is in operation and 0
that it is being repaired, or 1 could be that a person is healthy, while 0 is that he suffers from an attack
of some specific recurrent disease such as the relapsing form of multiple sclerosis. In the problem of
visual inattention during driving, which initiated this research, 1 means that the driver of a car looks
on the road, and 0 that she looks away from the road. This paper develops methods for using window
censored observations to estimate the distribution of the lengths of the 0-intervals in such processes.

Very large naturalistic driving studies, costing hundreds of millions of dollars, are used as a tool to
reduce traffic risks. Visual inattention, and in particular long off road glances, i.e. with the notation
above, long 0-intervals, pose the largest dangers and are at the center of interest. The statistical
methods needed for efficient use of these studies are still in an early stage of development. This paper
contributes one central ingredient needed for this. Analysis of data from periodic reliability inspection,
and prevalence based epidemiological studies where the time of onset of disease is not recorded, are
other examples of areas where our methods can be used.
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Figure 1: Visual behavior during a 45-second sideswiping near-crash (ID 8731) from the 100-Car
naturalistic driving study. ‘On’ indicates eyes on road, ‘Off’-eyes off road. The near-crash started at
second 258.

Under widely applicable technical assumptions (including finiteness of the expected number of
0-intervals in finite time intervals), which we assume are satisfied, the ergodic long-run distribution
function of the lengths of the 0-intervals,

F0(x) = lim
T→∞

# {0-intervals in [0, T ] which are shorter than x}
# {0-intervals in [0, T ]}

exists. In particular, if X(t) is an alternating renewal process then F0 is simply the common distribu-
tion function of the 0-intervals.

We assume that a number of independent stationary 0-1 processes of this kind have been observed
during a randomly placed time window of fixed length w > 0 (the results also extend to windows
of differing lengths). Since the process is stationary, we without loss of generality assume that this
observation window is [0, w]. The challenge is that the 0-intervals which fall in [0, w] may be left-
censored, right-censored, or both left and right-censored, and that furthermore the left and doubly-
censored observations are obtained by length-biased sampling. The goal is to estimate F0(x), or the
tail of F0(x).

In the situation we mainly aim at here, the corresponding distribution F1(x) of lengths of 1-
intervals is of less interest, or the 1-intervals are too long in relation to the window-length to make
estimation reasonable. Our methods work both for long and for short 1-intervals.

We consider (i) a parametric statistical model for F0(x), and (ii) a semi-parametric generalized
Pareto model, where the parametric form for F0(x) is only assumed to apply for x-values which exceed
a threshold u > 0. For both models we develop conditional maximum likelihood estimation methods;
introduce goodness of fit plots; study the methods by simulation; and apply them to data from a large
naturalistic driving study, the 100-car study. For the heavytailed semi-parametric model we also show
asymptotic normality.

The literature on statistical inference for window censored multistate processes is limited. Alvarez
(2005) derives the maximum likelihood estimator for a stationary alternating renewal process, and, for
the special case of a 0-1 continuous time Markov chain, proves asymptotic normality as the number
of windows tends to infinity with window length kept constant. Karr (1994) considers maximum
likelihood estimation for a 0-1 continuous time Markov chain, using observation of a single sample path
in an expanding window. Non-parametric estimation for bi- and multivariate semi-Markov processes
is studied in Alvarez (2006) and Ouhibi and Limnios (1999).

Starting with Cox (1969), Vardi (1982, 1985), length-bias sampling for ordinary renewal processes
has received much more attention. For recent contributions see Gill and Keiding (2010), Zhao and
Nagaraja (2011), Ning et al. (2013), Zhu et al. (2014), and the references in these papers. A different
strand of literature considers left truncated, right-censored and size biased observations, often in
connection with prevalent cohort deigns in epidemiology, see e.g. Qin et al. (2011) and the references
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therein. In the literature on tail estimation, only right censoring seems to have been considered, see
Einmahl et al. (2008).

Section 2 below introduces the models and estimators. In Section 3 small sample behavior of the
methods are studied by simulation, and they are applied to the 100-car naturalistic driving study in
Section 4. Results on asymptotic normality and MatLab code for the estimation routines are available
in Supplementary Materials.

2 Models and likelihoods

Estimation under a full parametric specification of F0 is considered in Subsection 2.1, and Subsection
2.2 introduces the tail estimation methods. Subsection 2.3 briefly discusses confidence intervals; re-
gression modeling; goodness of fit plots; joint estimation of F0 and F1; long observation windows; and
asymptotic normality.

For the estimation we only use those of the observation windows which intersect at least one 0-
interval. Hence the likelihoods introduced below are conditional on the observation window intersecting
at least one 0-interval. Further, in Subsections 2.1 and 2.2 we only use the first 0-interval in each
window since this makes the independence assumption we need much less restrictive. This assumption
is that conditionally on X(0) = 1, the lengths of the starting 1-interval and of the following 0-interval
are mutually independent. We assume that F0 and F1 have continuous densities f0 and f1 and finite
means. The finite mean condition is required for ergodicity of the process.

2.1 Conditional maximum likelihood estimation

Let S be the starting point of the first 0-interval in the observation window [0, w], let L be the length
of the observed part of this 0-interval, and let F̄ = 1 − F denote the tail (or “survival”) function
corresponding to a distribution F . The lengths of the observed 0-intervals (see Figure 2) are classified
as

nc) non-censored, i.e. with S ∈ (0, w), S + L < w: denoted `nc,1, . . . `nc,nnc ,

rc) right-censored, i.e. with S ∈ (0, w), S + L = w: denoted `rc,1, . . . `rc,nrc ,

lc) left-censored, i.e with S = 0, L < w: denoted `lc,1, . . . `lc,nlc
, and

dc) doubly-censored, i.e. with S = 0, L = w: denoted `dc,1 = . . . `dc,ndc
= w,

where nnc is the number of non-censored observations, nrc is the number of right-censored observations,
and so on. Further, if the observation window starts with an 1-interval we let snc,1, . . . snc,nnc denote
the lengths of those (left-censored) starting 1-intervals which are followed by a non-censored 1-interval,
and we let src,1, . . . src,nrc be the lengths of the starting (left-censored) 1-intervals which are followed
by a right-censored 0-interval, see Figure 2; note that here the subscripts indicate the form of the
censoring of the corresponding 0-intervals, and not of the 1-intervals themselves. It is well known
that if X(t) is an alternating renewal process, then the distribution of L conditional on X(0) = 0 (i.e.
on S = 0) has the length-weighted “residual life” density and distribution functions

f r0 (x) = F̄0(x)/µ0 and F r0 (x) =

∫ x

0
f r0 (y)dy, (1)

where the superscript “r” indicates “residual”, and where µ0 =
∫
xf0(x)dx is the mean of F0. It can

be seen that (1) in fact holds not just for alternating renewal processes, but also for general stationary
ergodic 0-1 processes, under conditions as in the introduction. Similarly, let µ1 =

∫
xf1(x)dx and

let f r1 and F r1 be the residual life density and distribution functions obtained from F1. Further (by
ergodicity) p0 = Pr(X(0) = 0) = µ0/(µ0 + µ1) and p1 = Pr(X(0) = 1) = µ1/(µ0 + µ1).
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Figure 2: Censoring of the first 0-interval in the observation window: nc = no censoring, rc = right
censoring, lc = left censoring, dc = double censoring. The s and l-values are the starting position and
the length of the observed 0-interval, respectively. Grey indicates un-observed parts of the process.

Now, suppose additionally that there is a fully parametric specification, F0(x) = F0(x; θ) of the
cumulative distribution function of the length of a 0-interval, with θ a finite dimensional parameter.
Instead no additional conditions on F1 are assumed. Then, using the independence of S and L for
the “nc” and “rc” cases, observations ` of L and s of S contribute to the likelihood function with the
following factors,

nc) f r1 (s)f0(`; θ) if the observation is uncensored,

rc) f r1 (s)F̄0(`; θ) if the observation is right-censored,

lc) f r0 (`; θ) if the observation is left-censored, and

dc) F̄ r0 (w; θ) if the observation is doubly-censored.

Thus the full likelihood function based on the observed lengths of the zero-intervals and on the infor-
mation if X(0) is 0 or 1 is

L(θ) = pnnc+nrc
1

nnc∏
k=1

f r1 (snc,k)f0(`nc,k; θ)×
nrc∏
k=1

f r1 (src,k)F̄0(`rc,k; θ) (2)

×pnlc+ndc
0

nlc∏
k=1

f r0 (`lc,k; θ)× F̄ r0 (w)ndc .

Now, recall that p1 = µ1/(µ0 + µ1) and p0 = µ0/(µ0 + µ1) where µ0 = µ0(θ) and µ1 is determined by
F1. Thus the factors p1 and p0 in the likelihood function couple information about F1 with information
about θ.

However, µ1 is determined by the tail behavior of F1, and in the situations we aim at the 1-intervals
are much longer than the 0-intervals, and hence data collected in the short observation window [0, w]
contains little information about the tail of F1. For a special case, a continuous time 0-1 Markov chain,
Alvarez (2005) indicates that the loss of information from using the conditional likelihood instead of
the full likelihood can be sizeable if the 0- and 1-intervals are of comparable lengths, but that the
loss is small if the lengths are substantially different. The loss should be even smaller in the present
situation. Thus p1 and p0 contain little useful information about θ.

We hence use a conditional log likelihood function, which in addition to being conditional on the
observation window intersecting at least one 0-interval, also is conditional on the observed values
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n1 = nnc + nrc and n0 = nlc + ndc. Omitting factors which do not depend on θ and hence do not play
a role in ML-estimation, the conditional log likelihood function then is

`(θ) = `(θ| n0, n1) =

nnc∑
k=1

log f0(`nc,k; θ) +

nrc∑
k=1

log F̄0(`rc,k; θ) (3)

+

nlc∑
k=1

log f r0 (`lc,k; θ) + ndc log F̄ r0 (w).

Estimates of θ are obtained as θ̂ = arg maxθ `(θ).

Example. A simple and important special case is when F0 is an exponential distribution, F0(x) =
1− e−x/σ, f0(x) = σ−1e−x/σ, where we have written θ = σ. Then the residual life distribution is the
same as the original distribution, and hence

`(σ) = −σ−1

(
nnc∑
k=1

`nc,k +

nrc∑
k=1

`rc,k +

nlc∑
k=1

`lc,k + ndcw

)
− (nlc + nnc) log σ.

Hence the conditional maximum likelihood estimate of σ0 is the standard estimate of the scale param-
eter for a right-censored exponential distribution,

σ̂ =

∑nnc
k=1 `nc,k +

∑nrc
k=1 `rc,k +

∑nlc
k=1 `lc,k + ndcw

nlc + nnc
.

The standard error may be estimated by the inverse σ̂/
√
nlc + nnc of the observed information. �

If the exponential distribution does not fit, a possibility could be to use a gamma distribution: the
exponential distribution can be thought of as the time it takes for performing one task, and the gamma
distribution is then the time it takes to perform a number of identical tasks. The next, more general
and, perhaps, most natural model would be a phase type distribution, i.e. the distribution of the
time to absorption in a finite state Markov chain. In reliability applications, the Weibull distribution
may instead be more useful. For the convenience of the reader, formulas for the gamma and Weibull
distributions are given in Supplementary Materials.

2.2 Semi-parametric tail estimation

In this section we consider the situation where the tail of the distribution of the length of a 0-interval
is at the center of interest.

Using all of the data and a full parametric model produces an estimated distribution which is
mainly determined by the shape of the center of the distribution. This often leads to bad fit in the
tail of the distribution. We hence here instead only assume a parametric model for the tails of F0,
i.e. for F0(x) for values of x greater than some threshold u, and use non-parametric Kaplan-Meier
estimates of F (x) for x < u. Specifically, we use the Peaks over Thresholds model with a generalized
Pareto Distribution (GPD) for the excesses of u, see Coles (2001). We thus assume that

F̄0(x) = F̄0(u)Ḡ0(x− u), for x > u, (4)

where the threshold u < w is chosen large enough to make model fit acceptable. Here G0 is a
generalized Pareto cumulative distribution function,

G0(y) = G0(y;σ, γ) = 1−
(

1 +
γ

σ
y
)−1/γ

+
, y > 0,
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where the + signifies that the expression in parentheses should be replaced by 0 if it is negative. Thus
the distribution has a finite right endpoint σ/|γ| if γ < 0, and an infinite right endpoint otherwise.
To ensure a finite mean, we assume that γ < 1. For γ = 0 the expression should be interpreted as its
limit as γ → 0,

G0(y;σ, 0) = e−y/σ,

i.e. as an exponential distribution with scale parameter σ. Typically the choice of u is aided by
diagnostic data plots. Coles (2001), Section 4.3 contains a discussion of data driven methods for this
threshold choice, and of the ramifications surrounding it. Methods for checking model fit in the present
situation are discussed in Section 2.3.

The only part of the observations to be used for estimation of σ and γ are the excesses X = L− u
of u. Thus we will use

nc) the n̄nc excesses xnc,1, . . . xnc,n̄nc of u by non-censored observations,

rc) the n̄rc excesses xrc,1, . . . xrc,n̄rc of u by right-censored observations,

lc) the n̄lc excesses xlc,1, . . . xlc,n̄lc
of u by left-censored observations,

dc) the n̄dc values w − u which come from doubly-censored variables.

It follows from (4) that the cumulative distribution function of X, conditional on L > u, is G0,
and that the corresponding probability density function, for γ 6= 0, is

g0(x;σ, γ) =

{
σ−1

(
1 + γ

σx
)−1/γ−1

+
, for x > 0 and γ 6= 0

σ−1e−x/σ, for x > 0 and γ = 0.

By (1) and (4), the residual life density f r0 has the form

f r0 (x;σ, γ) = F̄0(u)Ḡ(x− u;σ, γ)/µ0, for x > u,

and, for γ 6= 0, the probability density of the excess of a residual life time over u is

gr0(x;σ, γ) =
F̄0(u)Ḡ(x;σ, γ)/µ0∫∞

u F̄0(u)Ḡ(y − u;σ, γ)dy/µ0
=

1

e(σ, γ)
Ḡ(x;σ, γ), (5)

for x > 0, where e(σ, γ) =
∫∞

0 Ḡ(y;σ, γ)dy = σ/(1−γ) is the mean of the GPD. Integration then gives
the residual life tail function

Ḡr0(x;σ, γ) =
(

1 +
γ

σ
x
)−1/γ+1

+
. (6)

For γ = 0, instead gr0(x) = σ−1e−x/σ and Ḡr0(x) = e−x/σ.
In this model, the form of the cumulative distribution function for x < u is supposed not to be

connected with the parametric form assumed for x ≥ u, and thus the numbers of excesses do not
to contain any information about µ or σ. Hence we condition on n̄nc, n̄rc, n̄lc, n̄dc, and obtain the
conditional log likelihood function

`u(σ, γ) =

n̄nc∑
k=1

log g0(xnc,k;σ, γ) +

n̄rc∑
k=1

log Ḡ0(xrc,k;σ, γ)

+

n̄lc∑
k=1

log gr0(xlc,k;σ, γ) + n̄dc log Ḡr0(w − u;σ, γ).

Thus, if γ 6= 0, then
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`u(σ, γ) = −(1/γ + 1)

n̄nc∑
k=1

log
(

1 +
γ

σ
xnc,k

)
− 1/γ

n̄rc∑
k=1

log
(

1 +
γ

σ
xrc,k

)
−1/γ

n̄lc∑
k=1

log
(

1 +
γ

σ
xlc,k

)
− n̄dc(1/γ − 1) log

(
1 +

γ

σ
(w − u)

)
−(n̄nc + n̄lc) log σ + n̄lc log(1− γ). (7)

For exponential case γ = 0 the log likelihood function, the estimate of σ and of its standard error is
the same as in the example at the end of Section 2.1.

It remains to find an estimator of F̄0(x) for x ≤ u, and in particular for F̄0(u). For this we use
the Kaplan-Meier estimator based on the non-censored and right-censored observations. (Cf. Gill
and Keiding (2010), p. 576). Also left and doubly-censored observations contain information about
F̄0(u). However, to use them requires non-parametric estimation of a density function. This can only
be done with much less precision, and using left and doubly-censored observations for non-parametric
estimation is expected to add little to the precision of the estimate.

2.3 Complements

Confidence intervals: The simplest approach often is to use the inverse of the observed information
matrix to estimate standard errors, and then to construct confidence intervals based on the assumption
of normality. However, for some models bootstrap or parametric bootstrap methods may be simpler,
and are also expected to lead to more accurate intervals if interest is centered at non-linear functions
of the parameters, such as high quantiles.

Regression type modeling: Covariate dependence may be handled by making the parameters of the dis-
tribution be functions of the covariates. For non-censored observations and the Peaks over Thresholds
model this is extensively discussed in, e.g., Coles (2001). In particular, models of the popular Accel-
erated Failure Time type may be obtained by letting the scale parameter σ in the generalized Pareto
distribution depend on covariates x = (x1, . . . , xd)

′ and parameters β = (β1, . . . , βd) as σ = exp(βx).

Goodness of fit plots: These are less standard. There are two types of observations of lengths of
0-intervals, a) left-censored and doubly-censored observations and b) non-censored and right-censored
ones. We propose to do model control separately in two plots, one for the type a) lengths and one
for type b) lengths, as follows. Let θ̂ be the estimate of the parameters. The first plot displays
the empirical tail function of the type a) observations and the parametric estimate F̄ r0 (·; θ̂) of the
length-biased tail function. The second plot shows the non-parametric Kaplan-Meier estimate of the
tail function of the interval lengths for the type b) observations together with the corresponding
parametric estimate F̄0(·; θ̂).

The goodness of fit plots can also indicate whether the assumption of independence between the
length of a starting 1-interval and the following 0-interval is reasonable, or if it is violated in ways which
influence estimation. This assumption may also be checked by estimating the parameters separately
from the type a) and the type b) observations, and comparing the results. If these estimates are
similar it is an indication that the independence assumption is acceptable. Finally, making these plots
for different thresholds u can be used to help choosing an appropriate u.

Maximum likelihood using the first two interval lengths: Write nno for the number of observation
windows which contain no observed 0-intervals, and write snclc and srclc for the observations from windows
which start with X(0) = 0, then have a 0-interval which is shorter than w, and then an 1-interval

7 Copyright c© 2018 by Dmitrii Zholud
www.zholud.com

http://www.zholud.com


Holger Rootzén and Dmitrii Zholud

which is fully observed, or right-censored, respectively. Further, write nnclc for the number of snclc -
observations and nrclc for the number of srclc -observations. Then, assuming θ also includes a fully
parametric specification of F1, and with obvious notation, the full likelihood for the first two observed
interval lengths is

L(θ) = pnnc+nrc+nno
1

nnc∏
k=1

f r1 (snc,k)f0(`nc,k; θ)×
nrc∏
k=1

f r1 (src,k)F̄0(`rc,k; θ)× F̄ r1 (w)nno

×pn
nc
lc +nrc

lc +ndc

0

nnc
lc∏

k=1

f r0 (`lc,k; θ)f1(snc`c,k; θ)×
nrc
lc∏

k=1

f r0 (`nc,k)F̄1(src`c,k; θ)× F̄ r0 (w)ndc .

Maximizing this likelihood gives an estimate of the parameters of the distribution of the lengths of
both 0-intervals and 1-intervals. This approach is suitable for situations where the 0-intervals and
1-intervals are of similar or shorter lengths than the observation window.

Long windows: If the observation windows are long compared with the 0- and 1-intervals, there
will often be several 0-intervals in an observation window, and it is wasteful to only use the first
observed 0-interval. For the fully parametric specification of F0 and an alternating renewal process
the conditional likelihood (3) still applies if one uses all 0-intervals in the window, and not just the first
one, and confidence intervals can be obtained from the observed information matrix. If there instead
is dependence between the intervals in an observation window (3) is not a true conditional likelihood
if all 0-intervals in the windows are used. But then (3) can instead be used as an estimating equation.
This will provide consistent estimators, but standard deviations typically will be larger than those
given by the inverse of the observed information matrix. However, since measurements from different
observation windows are assumed to be independent, standard deviations and confidence intervals
may be obtained using the sandwich method, or a block bootstrap with blocks equal to observation
windows.

Unless windows are very long or there is a quite high dependence between long 0-intervals, it is
rare that windows contain more than one 0-interval which is longer than the threshold u. Still, there
might sometimes be windows which start with one or a few short 0-intervals, and then comes a long
one. If one only uses the first 0-interval, such windows will not contribute to the estimation of the
parameters of the generalized Pareto distribution. However, for such data sets one can instead of the
first 0-interval use the first 0-interval, which exceeds the threshold u and consider (7) as an estimating
equation. Again the resulting estimators are consistent, and confidence intervals may be obtained
using block bootstrap.

Asymptotic normality: Using numerical computation, see Supplementary Materials, we show asymp-
totic normality of the GPD parameter estimates, for the most important case, γ > 0, when the
distribution is heavytailed. For the exponential sub-model, γ = 0, asymptotic normality follows from
standard results about right-censored observation of an exponential distribution. The asymptotics
appropriate for the present problem is n→∞ with u and w fixed, rather than the extreme value type
asymptotics where also u and w would tend to infinity. It may be noted that maximum likelihood
estimation of GPD parameters is non-regular for γ ≤ −0.5, see Drees et al. (2004).

3 Simulation study

In this section the small sample precision and coverage probabilities for confidence intervals are studied
by simulation. The simulation was set up to resemble the visual inattention data discussed in the next
section. In particular, throughout the observation window had length 6 s, and the 0-1 process was an
alternating renewal process, with a mean 6 s exponential distribution for the length of the 1-intervals.
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Further simulations, not included in the paper, produced very similar results for short (mean 0.1 s)
1-intervals. We used the MatLab fmincon minimization algorithm to find the ML-estimators. Confi-
dence intervals were computed from the observed information matrix using a custom made MatLab
function to compute the Hessian at the ML-estimates (MatLab fmincon estimates of the Hessian led
to unsatisfactory results). For each choice of parametric and non-parametric distribution, and choice
of N , the number of simulated glances that intersect the observation window w, we estimated the
parameter(s) of the distribution from 10,000 replicates of the experiment.

For the fully parametric method the simulations were from exponential, gamma and Weibull dis-
tributions with means of the 0-intervals µ = 0.2, 1, and 5, representing mild, medium and severe
censoring, respectively.

For the semi-parametric tail estimation method we simulated from a mixture of a uniform [0, 1]
and (1+ a GPD) distributions. The mixing probabilities were 0.5 and 0.5, respectively. For the GPD
distribution we used the shape parameters −0.25, 0, 0.25 and scale parameters 0.75, 1, 1.25. These
choices made the density continuous and led to the means 1.15, 1.25, 1.42 for the mixture distribu-
tions. In estimation we used the threshold u = 2.

Table 1 shows that for the fully parametric exponential model the root mean square error (RMSE)
was less than 15% of the true parameter value, except for samples of 50 observation windows for the
most heavily censored case µ = σ = 5. The coverage probabilities of the confidence intervals were
close to the nominal value 0.95.

Table 1: Bias, standard deviation (STD), and root mean square error (RMSE) of the ML-estimator
of σ in the full exponential model, and coverage probability (CP) for 95% confidence intervals.

N Bias STD RMSE CP

µ
=

0.
2 50 0.000 0.028 0.028 0.94

250 0.000 0.013 0.013 0.95
1000 0.000 0.006 0.006 0.95

µ
=

1 50 0.003 0.149 0.149 0.94
250 0.000 0.067 0.067 0.95

1000 0.000 0.034 0.034 0.95

µ
=

5 50 0.091 0.952 0.956 0.95
250 0.018 0.416 0.416 0.95

1000 0.007 0.205 0.206 0.95

For the gamma distribution the scale parameter was k = 3, roughly resembling the value in the
visual inattention data. Since (with parametrization as given in Supplementary Materials) µ = kσ
for the gamma distribution, σ was 0.067, 0.33, and 1.67. From Table 2 it can be seen that for sample
sizes 250 and 1000 the estimates of both parameters had RMSE-s which were smaller than 15% of the
true parameter value, and that the coverage probabilities of confidence intervals were close to 95%.

For the Weibull simulation the shape parameter was k = 1/2, which leads to a heavier than
exponential tail. Since µ = σΓ(1 + 1/k) for this distribution, the values for σ were 0.1, 0.5, and 2.5.
The estimates of both parameters had RMSE less than 19% of the estimated parameter for sample
sizes 250 and 1000. The coverage probabilities of the confidence intervals were close to 95% in all
cases.

It was thus possible to find reasonable estimates even for the heavily censored case, µ = 5 for some
sample sizes. Nevertheless the method may still often not be practical in such cases, since the fit of
the tail part of the model cannot be checked.
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Table 2: Bias and root mean square error (RMSE) of the ML-estimators of k and σ for gamma and
Weibull distributions, and coverage probability (CP) for 95% confidence intervals.

N
Bias RMSE CP

k̂ σ̂ k̂ σ̂ k̂ σ̂
G
a
m
m
a

µ
=

0.
2 50 0.184 −0.001 0.677 0.014 0.96 0.92

250 0.035 −0.000 0.267 0.006 0.95 0.94
1000 0.007 −0.000 0.131 0.003 0.95 0.95

µ
=

1 50 0.233 −0.008 0.794 0.076 0.95 0.90
250 0.040 −0.001 0.293 0.033 0.95 0.95

1000 0.011 −0.000 0.145 0.017 0.95 0.95

µ
=

5 50 0.550 −0.038 2.285 0.589 0.96 0.89
250 0.083 −0.007 0.462 0.253 0.95 0.94

1000 0.020 −0.002 0.217 0.125 0.95 0.95

W
ei
bu
ll

µ
=

0.
2 50 0.013 0.003 0.059 0.032 0.95 0.93

250 0.002 0.001 0.024 0.014 0.95 0.95
1000 0.001 0.000 0.012 0.007 0.95 0.95

µ
=

1 50 0.010 0.022 0.058 0.170 0.95 0.93
250 0.002 0.005 0.025 0.074 0.95 0.95

1000 0.000 0.001 0.012 0.037 0.95 0.94

µ
=

5 50 0.011 0.212 0.077 1.184 0.95 0.93
250 0.002 0.042 0.032 0.477 0.95 0.95

1000 0.001 0.013 0.016 0.237 0.95 0.95

For the semi-parametric tail estimation simulations, on average only around 11-18% of the ob-
servation windows contained an observed glance off road which was longer than the threshold u = 2
seconds, and hence, e.g., in the simulations with N=500 observation windows the estimators were
based on roughly 55-90 off-road glances in excess of 2 seconds. Together with the information loss
caused by censoring, this explains the rather low precision (in particular for γ = −0.25) for N = 500.

For samples consisting of N = 2, 500 and 10, 000 glances, the RMSE-s of the γ-estimators were less
than 0.07 and the RMSE-s of the σ-estimators were less than 10% of the true value, and the coverage
probabilities of the confidence intervals were close to the nominal value, see Table 3.

Table 3: Bias and root mean square error (RMSE) of the semi-parametric tail parameter estimators
of γ and σ, and coverage probability (CP) for 95% confidence intervals.

N
Bias RMSE CP

γ̂ σ̂ γ̂ σ̂ γ̂ σ̂

G
en
er
a
li
z
ed

P
a
re
to γ = −0.25

500 −0.078 0.061 0.211 0.207 0.89 0.94

σ = 0.75
2500 −0.015 0.011 0.067 0.069 0.93 0.94

10000 −0.004 0.003 0.030 0.032 0.94 0.95

γ = 0
500 −0.020 0.027 0.169 0.260 0.89 0.89

σ = 1
2500 −0.006 0.007 0.066 0.093 0.94 0.95

10000 −0.002 0.001 0.032 0.045 0.95 0.95

γ = 0.25
500 −0.019 0.043 0.135 0.284 0.94 0.95

σ = 1.25
2500 −0.003 0.007 0.056 0.119 0.95 0.95

10000 −0.001 0.002 0.028 0.059 0.95 0.95
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Finally, except for the smallest sample size, the empirical distribution of the estimators were close
to a normal distribution, both for the fully parametric models and for the semi-parametric models
(plots not shown here).

4 Visual inattention in driving

In a naturalistic driving study ordinary cars with ordinary drivers are equipped with cameras which
film driver behavior and the surrounding traffic; radars which measure the distance to road edges
and other cars; GPS instruments; and sensors which measure things like brake and gas pedal actions.
The vehicles are then used in everyday driving, just as if the instrumentation was not there, and
driving behavior is recorded in extensive detail, both for normal driving and when accidents occur.
In this section we analyze visual behavior in the 100-car naturalistic driving study (Wu and Jovanis
(2012), data may be downloaded at http://forums.vtti.vt.edu). For 4,803 randomly chosen 6 second
long observation windows obtained during normal driving, human annotators have used web camera
recordings of the driver’s face to construct a 6 second 0-1 process, where 0 means that the driver looks
away from the road, and 1 that she looks at the road. Out of these windows, 2,602 contained at least
one off-road glance.

In addition to individual off-road glance lengths, “task duration” periods which may include several
off-road glances, such as the time period used to find a new program on the car radio, have important
safety and economic consequences. Here we simply define a task as starting with an off-road glance
and continuing until there is a on-road glance which is longer than 1 second (thus off-road glances
separated by less than 1 second are joined). A more refined task duration analysis could (sometimes)
be made by using further information from the annotation. However this is beyond the scope of the
present analysis.

This section illustrates our methods by using them to find the (tail) distribution of off-road glances
and task durations during normal driving. As a first step we used the method from Section 2.1 to fit
gamma and Weibull distributions to the lengths of off-road glances and to task durations. The Weibull
distribution gave visually a slightly better fit. The parameter estimates for the Weibull distribution
were k̂ = 1.39 and σ̂ = 0.99 for the lengths of off-road glances, and k̂ = 1.16 and σ̂ = 1.26 for the task
durations.
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Figure 3: Left: Empirical tail function for left-censored off-road glances (jagged line) and fitted
residual life Weibull tail function (smooth line). Right: Kaplan-Meier tail function estimate for non-
censored plus right-censored off-road glances (jagged line) and fitted Weibull tail function (smooth
line). Left and Right: Measurement resolution was 0.1 s. Dotted line is the fit obtained when not
taking censoring and size-bias into account.
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From the goodness of fit plots in Figure 3 it can be seen that the Weibull fit did not catch tail
behavior well for the off-road glances. This was even more pronounced for the task durations (plots
not shown here).

In the literature it is often stated that off-road glances longer than 1.8-2 seconds are dangerous,
and hence we used the tail estimation method from Section 2.2 to fit a GPD distribution to the
excesses of 2 seconds. There were all in all 124 off-road glances longer than 2 seconds, and the GPD
parameter estimates were γ̂ = 0.13 and σ̂ = 1.09, with 95% confidence intervals (−0.07, 0.33) and
(0.72, 1.46), respectively. Hence γ was not significantly different from 0. Fitting the model with γ = 0,
i.e. assuming that the excess lengths of off-road glances longer that 2 seconds have an exponential
distribution, gave an estimated value of σ = 1.30 with 95% confidence interval (1.05, 1.57).
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Figure 4: Excess lengths longer than 2 seconds. Top row, left: Empirical tail function for left-censored
off-road glances (jagged line) and estimate from fitted residual life GPD distribution (smooth line).
Top row, right: Kaplan-Meier estimate of tail function for non-censored plus right-censored off-road
glances (jagged line) and estimate from fitted GPD (smooth line). Bottom row: the same plots for
task durations. All plots: Measurement resolution was 0.1 s. Dotted line shows fit obtained when not
taking censoring and size-bias into account.

Copyright c© 2018 by Dmitrii Zholud
www.zholud.com 12

http://www.zholud.com


Tail estimation for window-censored processes

The plots in Figure 4 show good fit of the GPD. The fit of the exponential distribution was almost
identical. Further, the Kaplan-Meier estimate of the probability that an off-road glance was longer
than 2 seconds, based on the non-censored and right-censored observations (Subsection 2.2), was 0.048,
with a 95% confidence interval (0.038, 0.058).

The same analysis for the task durations gave the GPD parameter estimates γ̂ = 0.03 and σ̂ = 1.84,
with 95% confidence intervals (−0.11, 0.17) and (1.51, 2.17), respectively, based on 424 tasks longer
than 2 seconds. This is almost exactly an exponential distribution. Figure 4 shows good fit. The
Kaplan-Meier estimate of the probability that a task duration was longer than 2 seconds, based on the
non-censored and right-censored observations, was 0.17, with a 95% confidence interval (0.16, 0.19).

The conclusion of this analysis, that the excess length (=length - 2 seconds) of off-road glances
and task durations both follow an exponential distribution seems both simple and useful to us. It is
also somewhat surprising since we expect that glance behavior is different in different traffic situations
and for different drivers. This presumably could lead to a relation between the length-biased distribu-
tion and the distribution itself which is different than for identically distributed observed 0-intervals.
However, Figure 4 shows little indication of this (although Figure 3 perhaps points to such an effect).
Still, the next step in the analysis of visual inattention will be to investigate how glance distributions
depend on traffic situation or driver characteristic covariates. We will pursue this further in a paper
directed at traffic safety research.

Finally, the goodness of fit plots show that the estimates which are obtained if one ignores censoring
and size-bias can be quite bad.
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the analysis.
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