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Tail approximations for the Student t−, F−, and Welch statistics for

non-normal and not necessarily i.i.d. random variables

Dmitrii Zholud∗

Abstract

Let T be the Student one- or two-sample t−, F−, or Welch statistic. Now release the underlying
assumptions of normality, independence and identical distribution and consider a more general
case where one only assumes that the vector of data has a continuous joint density. We determine
asymptotic expressions for P (T > u) as u→∞ for this case. The approximations are particularly
accurate for small sample sizes and may be used, for example, in the analysis of High-Throughput
Screening experiments, where the number of replicates can be as low as two to five and often
extreme significance levels are used. We give numerous examples and complement our results by
an investigation of the convergence speed - both theoretically, by deriving exact bounds for absolute
and relative errors, and by means of a simulation study.
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1 Introduction

This article extends early results of (Bradley, 1952a) and (Hotelling, 1961) on the tails of the dis-
tributions of some popular and much used test statistics. We quantify the effect of non-normality,
dependence, and non-homogeneity of data on the tails of the distribution of the Student one- and
two-sample t−, F− and Welch statistics. Our approximations are valid for samples of any size, but
are most useful for very small sample sizes, e.g. when standard central limit theorem-based approxi-
mations are inapplicable.

1.1 Problem statement and main result

Let X ∈ Rn, n ≥ 2, be a random vector and T = Tn(X) be (i) the Student one-sample t−test
statistic; or (ii) the Student two-sample t−test statistic; or (iii) the F−test statistic for comparison
of variances (in fact the F−test results apply also to one-way ANOVA, factorial designs, a lack-of-fit
sum of squares test, and an F−test for comparison of two nested linear models).

In this paper we study the asymptotic behavior of the tail distribution of T for small and fixed
sample sizes. Let g0(x) be the true joint density of X under H0 and g1(x) be the density under the
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alternative H1. Define G as a set of continuous densities that satisfy the regularity constraints of
Theorem 2.1, 3.1, or 5.1 for the three test statistics accordingly. Our main result is

Theorem 1.1. For any fixed value of n and each of the three choices of T , there exists a functional
K : G → R+, such that for all g0, g1 ∈ G the limit expression

P (T > u|H1)

P (T > u|H0)
=
Kg1

Kg0

+ o(1) as u→∞ (1)

holds with constants 0 < Kg0 = K(g0) < ∞ and 0 < Kg1 = K(g1) < ∞. The exact expressions for
K(g) are given in (4), (10) and (18) for the three choices of the test statistic T .

Remark 1. Standard assumption in the use of any of the test statistics described above is that X ∼
MVN(0, σ21n), where MVN(µ,Σ) denote the multivariate normal distribution with mean vector µ
and covariance matrix Σ. It is easy to check thatMVN(0, σ21n) ∈ G and thatK(MVN(0, σ21n)) = 1.

Further remarks on Theorem 1.1 are given in Supplementary Materials.

1.2 Motivation and applications

The questions addressed in this article have gained significant new importance through the explosive
increase of High-Throughput Screening (HTS) experiments, where the number of replicates is often
small, but instead thousands or millions of tests are performed, at extremely high significance levels.
Studying extreme tails of test statistics under deviation from standard assumptions is crucial in HTS
because of the following factors:

Extreme significance levels. HTS uses many thousands or even millions of biochemical, genetic
or pharmacological tests. In order to get a reasonable number of rejections, the significance level of
the tests is often very small, say, 0.001 or lower, and it is the extreme tails of the distribution of test
statistics which are important.

Deviation from standard assumptions. HTS assays are often subject to numerous systematic and
spatial effects and to large number of preprocessing steps. The resulting data may become dependent,
non-normal, or non-homogeneous, yet common test statistics such as one- and two- sample t− tests
are still routinely computed under standard assumptions.

Test power. It is even less likely that the data follows any standard distribution under the alter-
native hypothesis. By quantifying the tail behavior of a test statistic under arbitrary distributional
assumptions one can get more realistic estimators for the test power.

Error-control quantities. Given the scale of HTS experiments and necessity to make even larger
investments into further research on positives detected through a HTS study, it is important to have
realistic picture of the accuracy of such experiments. Consider, for example, estimation of pFDR,
the positive False Discovery Rate, see (Storey, 2002, 2003, 2004). As of now, estimates of pFDR are
obtained under the assumption that the true null distribution equals the theoretical one, and this
may lead to wrong decisions. In most cases, however, a sample from the null distribution can be
obtained by conducting a separate experiment. One can then model the tail distribution of the test
statistic, and apply e.g. methods of (Rootzén and Zholud, 2014), which account for deviations from
the theoretical null distribution.

Small sample sizes. Due to economical constraints, numbers of replicates in an individual experi-
ment in HTS are as small as two to five, which makes large sample normal approximations inapplicable.
Even for moderate sample sizes, CLT-based approximations are not accurate in the tails and better
approximations, such as those presented in this paper, are needed.
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We now consider a HTS experiment which was the motivation for the present paper. Left panel
of Figure 1 shows measured values of the Logarithmic Strain Coefficient (LSC) of the wildtype cells in
a Bioscreen array experiment in yeast genome screening studies, see (Warringer and Blomberg, 2003)
and (Warringer et al., 2003).
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Figure 1. The Wild Type Data Set. Left: Histogram of 3456 LSC values from the wildtype dataset.
Right: Empirical CDF of 1728 p-values obtained from one-sample t−test for pairs of LSC values.

The null hypothesis was that LSC of a wildtype yeast cell had normal distribution with mean zero
and unknown variance. The experiment was made for quality control purposes, hence no treatment
has been applied and the null hypothesis of mean zero was known to be true.

The histogram of the LSC values was skewed, see Figure 1, and we therefore plotted the empirical
cumulative distribution function (CDF) of the 1728 p−values obtained from the LSC values. As
expected, see the right panel in Figure 1, the distribution of the p−values was different from the
theoretical uniform distribution.

Note, however, that both lower and upper tails of the plot approach straight lines, as indicated by
the two arrows. This was in fact the starting point of the present article, and it later followed that
such tail behavior is justified by Theorem 1.1, see Supplementary Materials.

In practical applications one needs to be able to compute or estimate the constant Kg. This can
be done in a variety of ways.

Exact algebraic expression. For the case when components of X are i.i.d. random variables, con-
stant Kg can be obtained directly from (4), (10) and (18) for the three choices of the test statistic T
accordingly. We give numerous examples through Sections 2-5, and Supplementary Materials provides
Wolfram Mathematica code to compute Kg for even more complicated cases, like e.g. Multivariate
Normal case with g ∼MVN(0,Σ).

Numerical integration using quadratures. For an arbitrary multivariate density g(x) and Stu-
dent one- and two-sample t− statistics, or F− statistics with low degrees of freedom, Kg can be
computed from (4), (10) or (18) using adaptive Simpson or Lobatto quadratures. We provide the
corresponding MATLAB scripts in Supplementary Materials.

Numerical integration using Monte Carlo methods. For an F−statistic with the denomina-
tor that has more than two degrees of freedom, Kg can be computed using Monte Carlo integration,
see Supplementary Materials. Monte Carlo methods are applicable to the case described above as well.
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Simulations. The distribution tail of T can be estimated using simulations, see e.g. Section 7. In the
current paper we used “brute-force” approach, but importance sampling techniques can be applied
quite generally as well.

Estimation. If g(x) is unknown but one instead has a sample from g, then Kg can be estimated as a
slope of the graph of the CDF of the corresponding p-values in the origin of zero. In the yeast genome
screening experiment, for example, Kg approximately equals the slope of the red arrow - theoretical
justification of this fact is given in Supplementary Materials, and the estimation technique is similar
to the Peak-Over-Threshold (POT) method in Extreme Value Theory, see e.g. the SmartTail software
at www.smarttail.se and further examples in (Rootzén and Zholud, 2014).

Finally, the existence of Kg and its importance for questioning the logic behind some multiple testing
procedures is discussed in (Zholud, 2011), I.3.

1.3 Literature review

There is enormous amount of literature on the behavior of the Student one- and two-sample t− and F−
statistics under deviations from the standard assumptions. The overwhelming part of this literature
is focused on normal approximations, that is, when n → ∞. These are large sample approximations
though, and are irrelevant to the topic of the present article.

For small and moderate sample sizes one would typically use Edgeworth expansion, see e.g. (Field
and Ronchetti, 1990), (Hall, 1987) and (Gaen, 1949, 1950), or saddlepoint approximations, see e.g.
(Zhou and Jing, 2006), (Jing et al., 2004) and (Daniels and Young, 1991). Edgeworth expansion
improves the normal approximation but is still inaccurate in the tails. Saddlepoint approximations,
on the other hand, can be very accurate in the tails, see e.g. (Jing et al., 2004), but the latter
statement is based on purely empirical evidence and the asymptotic behavior of these approximations
as u→∞ is not well studied. Furthermore, in practice one would require exact parametric form of the
population density, and the use of saddle point approximations in statistical inference is questionable.

As for the approximations considered in this article, that is, when n is small and u → ∞, the
existing literature is very limited. This presumably can be explained by the fact that situations where
one would need to test at significance levels of 10−3 and lower never arose, until present times. We
focus on the most relevant works by (Bradley, 1952a,b) and (Hotelling, 1961).

Bradley covers the Student one-sample t− statistic for i.i.d. non-normal observations, and also
makes a somewhat less complete study of the corresponding cases for the Student two- sample t−test
and the F−test of equality of variances. (Bradley, 1952b) derives the constant Kg from geometrical
considerations, but does not state any assumptions on the underlying population density which en-
sure that the approximations hold. (Bradley, 1952a), on the other hand, gives assumptions on the
population density, but these assumptions are insufficient, see Section 2 of Appendix A.

(Hotelling, 1961) studies the Student one-sample t−test for an “arbitrary” joint density of X.
Hotelling derives the constant Kg assuming that the limit in the left-hand side of (1) exists and that
the function

Dn(ξ) =

∞∫
0

rn−1g(rξ1, · · · , rξn)dr

is continuous for both densities g0 and g1. When it comes to the examples, however, the existence of
the limit in (1) is taken for granted and the assumption of continuity of Dn(ξ) is never verified.

Finally, a more detailed literature review that covers other approaches and meritable scientific works
is given in Supplementary Materials.
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The structure of this paper is as follows: Sections 2 - 5 contain main theorems and examples; Section
6 addresses the convergence speed and higher order expansions; Section 7 presents a simulation study.
Appendix A includes the key lemma used in the proofs, in Section 1, and a discussion on the regularity
conditions, in Section 2; Appendix B contains figures from the simulation study; and, finally, follows
a brief summary of the Supplementary Materials that are available online.

2 One-sample t−statistic
Let X = (X1, X2, .., Xn), n ≥ 2, be a random vector that has a joint density g and define

T =
√
n(X/S),

where X and S2 are the sample mean and the sample variance of the vector X. Introduce the unit
vector I = (1/

√
n, 1/

√
n, .., 1/

√
n) , and assume that

g(xI) > 0 for some x ≥ 0 (2)

and that
∞∫

0

rn−1 sup
‖ξ‖<ε,
ξ∈L⊥

g
(
r (I + ξ)

)
dr <∞ (3)

for some ε > 0, where L is the linear subspace of Rn spanned by the vector I and L⊥ is its orthogonal
complement. Finally, introduce the constant

Kg = 2
π
n
2

Γ(n2 )

∞∫
0

rn−1g
(
rI
)
dr. (4)

Theorem 2.1. If g is continuous and satisfies (2) and (3), then

P (T > u)

tn−1(u)
= Kg + o(1) as u→∞, (5)

where tn−1(u) is the tail of the t−distribution with n− 1 degrees of freedom and 0 < Kg = K(g) <∞.

Proof. We use several variable changes to transform the right-hand side of

P (T > u) =

∫
D1

g(x)dx,

where D1 = {x : T > u} and dx is the notation for dx1dx2..dxn, to the form treated in Corollary 8.1.1
in Section 1 of Appendix A. Let e1, e2, .., en be the standard basis in Rn and A be an orthogonal
linear operator which satisfies

Aen = I. (6)

Setting x = Ay we have that X = yn/
√
n and S2 =

∑n−1
i=1 y

2
i /(n− 1), and hence

P (T > u) =

∫
D2

g(Ay)dy,

where D2 =

y : yn√
1

n−1

n−1∑
i=1

y2i

> u

 .
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Next, introducing new variables yi = (n − 1)1/2rti for i ≤ n − 1 and yn = r, r > 0, applying
Fubini’s theorem, and recalling (6) we get

P (T > u) =

∫
· · ·
∫

∑
t2i<u

−2

G(t)dt, (7)

where

G(t) = (n− 1)
n−1
2

∞∫
0

rn−1g
(
r
(
I +Av(t)

))
dr,

and

v(t) = (n− 1)1/2
(
t1, t2, .., tn−1, 0

)
.

Continuity of g and (3) ensure that G is continuous at zero, by the dominated convergence theorem,
and Corollary 8.1.1 in Section 1 of Appendix A completes the proof. �

Assumption (2) ensures that Kg > 0 and the condition (3) holds if, for example, Kg < ∞ and g is
continuous and has the asymptotic monotonicity property, see Lemma 9.2, Section 2, Appendix A.

Now consider the case when one of the assumptions (3) or (2) is violated. If (3) holds and (2) is
violated, then (5) holds with Kg = 0, that is, the right tail of the distribution of T is “strictly lighter”
than tn−1(u), the tail of the t−distribution with n−1 degrees of freedom. If, instead, (2) holds and (3)
is violated, then, Theorem 9.1 in Section 2 of Appendix A shows that the right tail of the distribution
of T is “at least as heavy” as tn−1(u), provided Kg <∞, and “strictly heavier” than tn−1(u) if Kg =∞.

We next consider two important corollaries - one concerning dependent Gaussian vectors, and an-
other one that addresses the non-normal i.i.d. case.

Corollary 2.1.1 (Gaussian zero-mean case). If X ∼ MVN(0,Σ), where Σ is a strictly positive-
definite covariance matrix, then (5) holds with

Kg =

(
IΣIT

)n/2
|Σ|1/2

.

Proof. Deriving the expression for Kg in (4) is straightforward. Note that Kg < ∞ since Σ is non-
degenerate and MVN(0,Σ) has the asymptotic monotonicity property, see Section 2 of Appendix A.
It then follows from Lemma 9.2 that the regularity constraint (3) holds, and so does (5). �

One possible application of Corollary 2.1.1 is to correct for the effect of dependency when using test
statistic T . This is done by dividing the corresponding p−value by Kg.

Now consider the effect of non-normality. Assume that the elements Xi of the vector X are inde-
pendent and identically distributed and let h(x) be their common marginal density, so that g(x) =
h(x1)h(x2) · · ·h(xn).

Corollary 2.1.2 (i.i.d. case). If h(x) is continuous, and monotone on [L,∞) for some finite constant
L, then (5) holds with

Kg = 2
(πn)

n
2

Γ(n2 )

∞∫
0

rn−1h (r)n dr <∞.

Proof. The monotonicity of h(x) on [L,∞) implies that g(x) has the asymptotic monotonicity property,
see Section 2 of Appendix A, and the regularity assumption (3) hence follows from finiteness of Kg

and Lemma 9.2. The finiteness of Kg, in turn, follows if we show that rh(r)→ 0 as r →∞.
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Indeed, assume to the contrary that lim sup rh(r) > 0. Then there exists δ > 0 and a sequence {rk}∞k=0

with r0 = L+ 1 and such that rk+1 > 2rk and rkh(rk) > δ for any k > 0, and we get a contradiction
since the monotonicity of h(x) on [L,∞) then implies that h(x) can not be a density,

∞∫
L+1

h(r)dr ≥
∞∑
k=1

(rk − rk−1)h(rk) > δ
∞∑
k=1

rk−rk−1

rk
=∞. �

Table 1. The constants Kg for the i.i.d case, Student one-sample t−test; Γ(x), B(x) and M(a, b, x)
are the Gamma, Beta and Kummer confluent hypergeometric function, see e.g. (Hayek, 2001).

Normal with mean µ 6= 0 and standard deviation σ > 0

M
(

1−n
2 , 1

2 ,−
nµ2

2σ2

)
+ µ

σ

√
2nΓ( 1+n

2 )
Γ(n2 )

M
(

1− n
2 ,

3
2 ,−

nµ2

2σ2

)
Half-normal, and log-normal derived from a N(µ, σ2)

2n and n
n−1
2
√
π

2
n−3
2 σn−1Γ(n2 )

χ with ν > 0, and χ2 (and its inverse) with ν ≥ 2 d.f.

2nπn/2Γ(nν2 )
n
n
2 (ν−1)Γ( ν2 )

n
Γ(n2 )

and
2πn/2Γ(nν2 )

n
n
2 (ν−1)Γ( ν2 )

n
Γ(n2 )

F with µ > 0 and ν > 0 degrees of freedom

2(πn)n/2Γ(µn2 )Γ( νn2 )Γ(µ+ν2 )
n

Γ(n2 )[Γ(µ2 )Γ( ν2 )]
n

Γ(µ+ν2 n)

T with ν > 0 d.f. and Cauchy

nn/2Γ( νn2 )
Γ
(

(ν+1)n
2

) (Γ( ν+1
2 )

Γ( ν2 )

)n
and nn/2

2n−1π
n−1
2 Γ(n+1

2 )

Beta with shape parameters α > 1 and β > 1

2(πn)n/2Γ(αn)Γ(1+(β−1)n)
B(α,β)nΓ(n2 )Γ(1+(α+β−1)n)

Gamma (and its inverse) with shape α > 1

2n
n
2 (1−2α)πn/2Γ(αn)

Γ(α)nΓ(n2 )

Uniform on interval [a, b], b > 0

(πn)
n
2

Γ(n2 +1)


(

b
b−a

)n
0 ∈ [a, b]

bn−an
(b−a)n [a, b] ⊂ [0,∞)

Centered exponential and exponential

2(πn)
n/2

Γ(n)

enΓ(n2 )
and

2(πn)
n/2

Γ(n)

Γ(n2 )

Maxwell, and Pareto with k > 0 and scale α > 0

( 4
n)

n
Γ( 3n

2 )
Γ(n2 )

and (πn)n/2αn−1

Γ(n2 +1)
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3 Two-sample t−statistic
In this section we cover the Student two-sample t−statistic. However, we first consider a more general
case. For n1 ≥ 2, n2 ≥ 2, set n = n1 + n2 and let X = (X1, X2, .., Xn) be a random vector that
has a multivariate joint density g. Further, let S1 and S2 be the sample variances of the vectors
(X1, X2, .., Xn1) and (Xn1+1, Xn1+2, .., Xn) and define

T =

1
n1

n1∑
i=1

Xi − 1
n2

n∑
i=n1+1

Xi√
αS2

1 + βS2
2

,

where α and β are some positive constants (to be set later). Next, define the two unit vectors

I1 = (1/
√
n1, 1/

√
n1, .., 1/

√
n1, 0, 0, .., 0) and I2 = (0, 0, .., 0, 1/

√
n2, 1/

√
n2, .., 1/

√
n2) ,

and let ω0 = arccos
(√

n2/n
)

. We assume that

g
(
r
(

cos(ω − ω0)I1 + sin(ω − ω0)I2

))
> 0 (8)

for some r ≥ 0 and ω ∈ [−π/2, π/2], and that for some ε > 0

π/2∫
−π/2

cos(ω)n−2

∞∫
0

rn−1 sup
‖ξ‖<ε
ξ∈L⊥

g
(
r
(

cos(ω − ω0)I1 + sin(ω − ω0)I2 + ξ
))
drdω <∞, (9)

where L is a linear subspace of Rn spanned by the vectors I1 and I2, and L⊥ is its orthogonal
complement. Next, define the constant

Kg = C(n1, n2, α, β)

π/2∫
−π/2

cos(ω)n−2

∞∫
0

rn−1g
(
r
(

cos(ω − ω0)I1 + sin(ω − ω0)I2

))
drdω, (10)

where the constant C(n1, n2, α, β) is given by

C(n1, n2, α, β) =
2π

n−1
2

(
n1−1
α

)n1−1
2

(
n2−1
β

)n2−1
2
(

1
n1

+ 1
n2

)n−2
2

Γ
(
n−1

2

)
(n− 2)

n−2
2

.

Theorem 3.1. If g is continuous and satisfies (8) and (9), then

P (T > u)

tn−2(u)
= Kg + o(1) as u→∞, (11)

where tn−2(u) is the tail of the t−distribution with n− 2 degrees of freedom and 0 < Kg = K(g) <∞.

Proof. The proof is similar to the proof of Theorem 2.1. Let A be an orthogonal linear operator such
that

Aen1 = I1 and Aen = I2. (12)

Changing coordinate system x = Ay gives

1

n1

∑n1

i=1
Xi = yn1/

√
n1,

1

n2

∑n

i=n1+1
Xi = yn/

√
n2,
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S2
1 =

∑n1−1

i=1
y2
i /(n1 − 1) and S2

2 =
∑n−1

i=n1+1
y2
i /(n2 − 1)

and therefore

P (T > u) =

∫
{x:T>u}

g(x)dx =

∫
D

g(Ay)dy,

where D =

y :

(
1√
n1
yn1 − 1√

n2
yn

)/(
α

n1−1

n1−1∑
i=1

y2
i + β

n2−1

n−1∑
i=n1+1

y2
i

)1/2

> u

 .

Next, define c1(ω) and c2(ω) by

c1(ω)√
1/n1 + 1/n2

=

√
n1 − 1

α
cos(ω) and

c2(ω)√
1/n1 + 1/n2

=

√
n2 − 1

β
cos(ω),

and introduce new variables t1, t2, .., tn−2, r, ω such that

yi = rc1(ω)ti for i = 1, 2, .., n1 − 1,

yi = rc2(ω)ti−1 for i = n1 + 1, n1 + 2, .., n− 1,

yn1 = r cos(ω − ω0) and yn = r sin(ω − ω0), r > 0.

The identity cos(ω−ω0)/
√
n1− sin(ω−ω0)/

√
n2 =

√
1/n1 + 1/n2 cos(ω), Fubini’s theorem, and (12)

give

P (T > u) =

∫
· · ·
∫

n−2∑
i=1

t2i<u
−2

G(t)dt, (13)

where

G(t) = M

π/2∫
−π/2

cos(ω)n−2

∞∫
0

rn−1g
(
r
(

cos(ω − ω0)I1 + sin(ω − ω0)I2 +Av(t, ω − ω0)
))
drdω

with
v(t, ω) =

(
c1(ω)t1, .., c1(ω)tn1−1, 0, c2(ω)tn1 , .., c2(ω)tn−2, 0

)
and

M =

(
n1 − 1

α

)n1−1
2
(
n2 − 1

β

)n2−1
2
(

1

n1
+

1

n2

)n−2
2

.

The finiteness of the integral in (9) and continuity of g imply the continuity of G at zero by the
dominated convergence theorem, and Corollary 8.1.1 in Section 1 of Appendix A gives the asymptotic
expression (11) with the constant Kg defined in (10). �

The assumption (8) ensures that Kg > 0, and the regularity constraint (9) can be verified directly, or
using criteria in Section 2 of Appendix A.

Corollary 3.1.1 (Gaussian zero-mean case). If X ∼ MVN(0,Σ), where Σ is a strictly positive-
definite covariance matrix, then (11) holds with

Kg = C(n1, n2, α, β)
Γ
(
n
2

)
2π

n
2 |Σ|1/2

π/2∫
−π/2

cos(ω)n−2(
v(ω)Σ−1v(ω)T

)n/2dω, (14)

where v(ω) = cos(ω − ω0)I1 + sin(ω − ω0)I2.
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Proof. Let λ be the smallest eigenvalue of Σ−1. Note that λ > 0, which implies that

g(x) ≤ 1

(2π)n/2|Σ|1/2
e−

λ
2
‖x‖2 <

1

‖x‖n+1

for ‖x‖ large enough. Now, condition (9) holds according to Lemma 9.1 in Section 2 of Appendix A,
and deriving Kg is a calculus exercise. �

The asymptotic expression for the distribution tail of the Student two-sample t−statistic is obtained
by setting

α =
n1 − 1

n− 2

(
1

n1
+

1

n2

)
and β =

n2 − 1

n− 2

(
1

n1
+

1

n2

)
.

For the Gaussian zero-mean case the expression (14) then reduces to

Γ(n2 )

Γ(n−1
2 )
√
π|Σ|1/2

π/2∫
−π/2

cos(ω)n−2(
v(ω)Σ−1v(ω)T

)n/2dω. (15)

As expected, if Σ = σ21n (recall, 1n is the identity matrix) and σ2 > 0, then direct calculation shows
that Kg = 1. A less trivial case is when the population variances are unequal. Substituting the
diagonal matrix

Σ = diag{σ2
1, .., σ

2
1︸ ︷︷ ︸, σ2

2, .., σ
2
2︸ ︷︷ ︸}

n1 n2

into (15), the latter, after some lengthy algebraic manipulations, takes form

Γ(n2 )n
n
2
−1

1 kn2

n
n−1
2 Γ(n−1

2 )
√
π

 1∫
−∞

(1− x)n−2

(1 + ck2x2)n/2
dx+

∞∫
1

(x− 1)n−2

(1 + ck2x2)n/2
dx

 ,
where k = σ1/σ2 and c = n2/n1. The integrals can be computed by resolving the corresponding
rational functions into partial fractions (n is even) or by expanding brackets in the numerator and
integrating by parts (n is odd). We have computed Kg for sample sizes up to 6, see Table 2 below.

Table 2. Constants Kg for the Student two-sample t−test, variances unequal.

n2\n1 n1= 2 n1= 3 n1= 4 n1= 5 n1= 6

n2= 2 k2+1
2k

(2k2+3)
3/2

5
√

5k2
(k2+2)

2

9k3
(2k2+5)

5/2

49
√

7k4
(k2+3)

3

64k5

n2= 3
(3k2+2)

3/2

5
√

5k

(k2+1)
2

4k2
(3k2+4)

5/2

49
√

7k3
(3k2+5)

3

512k4
(k2+2)

7/2

27
√

3k5

n2= 4
(2k2+1)

2

9k
(4k2+3)

5/2

49
√

7k2
(k2+1)

3

8k3
(4k2+5)

7/2

2187k4
(2k2+3)

4

625k5

n2= 5
(5k2+2)

5/2

49
√

7k

(5k2+3)
3

512k2
(5k2+4)

7/2

2187k3
(k2+1)

4

16k4
(5k2+6)

9/2

14641
√

11k5

n2= 6
(3k2+1)

3

64k
(2k2+1)

7/2

27
√

3k2
(3k2+2)

4

625k3
(6k2+5)

9/2

14641
√

11k4
(k2+1)

5

32k5

Note also that for odd sample sizes the exact distribution of the Student two-sample t−statistic is
known, see (Ray and Pitman, 1961). The closed form expressions for (14) or (15) for an arbitrary
covariance matrix Σ is unknown, but for fixed n one can compute Kg numerically. In most cases it is
also possible to obtain the exact expression for Kg using Mathematica software. Examples are given
in Supplementary Materials.
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4 Welch statistic

The Welch statistic differs from the Student two-sample t−statistic in that it has α = 1/n1 and
β = 1/n2, see the definition of T in the previous section. Welch statistic relaxes the assumption of
equal variances and its distribution under the null hypothesis of equal means is instead approximated
by the Student t−distribution with ν degrees of freedom, where

ν =
(S2

1/n1 + S2
2/n2)2

S4
1/(n

2
1(n1 − 1)) + S4

2/(n
2
2(n2 − 1))

is estimated from the data. Welch approximation performs poorly in the tail area because it has
wrong asymptotic behavior, cf. Corollary 3.1.1. The accuracy of our asymptotic approximation and
its relation to the exact distribution of the Welch statistic for odd sample sizes, see (Ray and Pitman,
1961), is discussed in Supplementary Materials. We also study the accuracy of our approximations
using simulations, see Section 7.

Finally, Table 3 presents constants Kg for the Welch statistic under standard assumptions. Here
constant k stands for the ratio σ1/σ2.

Table 3. Constants Kg for the Welch t−test, variances unequal.

n2\n1 n1= 2 n1= 3 n1= 4 n1= 5

n2= 2 k2+1
2k

(2k2+3)
3/2

9k2
3
√

3
2(k2+2)

2

16k3
4(2k2+5)

5/2

125k4

n2= 3
(3k2+2)

3/2

9k
(k2+1)

2

4k2
(3k2+4)

5/2

50
√

5k3
4(3k2+5)

3

1215k4

n2= 4
3
√

3
2(2k2+1)

2

16k
(4k2+3)

5/2

50
√

5k2
(k2+1)

3

8k3
3
√

3
35(4k2+5)

7/2

1715k4

n2= 5
4(5k2+2)

5/2

125k

4(5k2+3)
3

1215k2
3
√

3
35(5k2+4)

7/2

1715k3
(k2+1)

4

16k4

n2= 6
25
√

5
3(3k2+1)

3

216k

25
√

5
7(2k2+1)

7/2

343k2
25
√

5
2(3k2+2)

4

16384k3
4(6k2+5)

9/2

177147k4

5 F−statistic
In this section we study the tails of the distribution of an F -statistic for testing the equality of
variances. Similar results can also be obtained for an F -test used in one-way ANOVA, lack-of-fit
sum of squares, and when comparing two nested linear models in regression analysis. Define random
vectors X = (X1, X2, .., Xn1) and Y = (Y1, Y2, .., Yn2), n1 ≥ 2 and n2 ≥ 2, and let g(x,y) be the joint
density of the vector (X,Y). Now set n = n1 + n2 and define

T = S2
1/S

2
2 ,

where S1 and S2 are the sample variances of X and Y respectively. Let s1(x) denote the sample
standard deviation of the vector x ∈ Rn1 and define the unit vector I =

(
1/
√
n2, 1/

√
n2, .., 1/

√
n2

)
.

We assume that
s1(x) g

(
x, rI

)
> 0 (16)

for some x and r, and that the integral∫
· · ·
∫

Rn1

s1(x)n2−1

∞∫
−∞

max
‖ξ‖<ε,
ξ∈L⊥

g
(
x, rI + s1(x)ξ

)
drdx (17)
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is finite for some ε > 0, where L is a linear subspace spanned by vector I and L⊥ is its orthogonal
complement. Finally, define the constant

Kg =
Γ
(
n1−1

2

)
(π(n1 − 1))

n2−1
2

Γ
(
n−2

2

) ∫
· · ·
∫

Rn1

s1(x)n2−1

∞∫
−∞

g (x, rI) drdx. (18)

Theorem 5.1. If g is continuous and satisfies (16) and (17), then

P (T > u)

Fn1−1,n2−1(u)
= Kg + o(1) as u→∞, (19)

where Fn1−1,n2−1(u) is the tail of the F -distribution with parameters n1 − 1 and n2 − 1 and 0 < Kg =
K(g) <∞.

Corollary 5.1.1 (Gaussian zero-mean case, independent samples). If X and Y are independent zero-
mean Gaussian random vectors with strictly non-degenerate covariance matrices Σ1 and Σ2, then (19)
holds with

Kg = C

∫
· · ·
∫

Rn1

s1(x)n2−1(
1 + xΣ−1

1 xT
)n/2dx, (20)

where the constant C is given by

C =
(n− 2)(n1 − 1)

n2−1
2 Γ

(
n1−1

2

)
|IΣ2I

T |1/2

2π
n1+1

2 |Σ1|1/2|Σ2|1/2
.

The proofs of Theorem 5.1 and Corollary 5.1.1 are given in Supplementary Materials. Now consider
the asymptotic power of the F−statistic.

Corollary 5.1.2 (Asymptotic Power). If X and Y are independent zero-mean Gaussian random
vectors with covariance matrices σ2

11n1 and σ2
21n2, σ2

1 + σ2
2 > 0, then

lim
u→∞

P (T > u)

Fn1−1,n2−1(u)
=

(
σ1

σ2

)n2−1

. (21)

Proof. Changing variables x = σ1By, where B is an orthogonal operator such that

Ben1 = (1/
√
n1, 1/

√
n1, .., 1/

√
n1) ,

the integral on the right-hand side of (20) takes form

σn−1
1

(
1

n1 − 1

)n2−1
2
∫
· · ·
∫

Rn1

(
‖y‖2 − y2

n1

)n2−1
2

(1 + ‖y‖2)n/2
dy,

and is then evaluated by passing to spherical coordinates. �

A careful reader may note that (21) follows from the asymptotic expansion of

P (T > u) = Fn1−1,n2−1

(
(σ2/σ1)2u

)
in terms of Fn1−1,n2−1 (u). Our aim was just to show that despite the seeming complexity of the
expression (18), the constant Kg can be evaluated directly, at least for some standard densities. It is
also possible to compute Kg numerically, see the (MATLAB, 2010) scripts in Supplementary Materials.
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6 Second and higher order approximations

In this section we discuss the speed of convergence in Theorem 1.1. Let T be one of the test statistics
defined in Sections 2, 3 and 5 and let tk(u) be the Student t−distribution tail with k degrees of
freedom and Fm,k(u) be the F−distribution tail with parameters m and k. For an arbitrary continuous
multivariate density g = g1(x), assume that conditions (3), (9) and (17) hold, and define the constant
Kg by (4), (10) and (18) for the three tests respectively. For the Student t− statistic the function
G(t) is given by (7) and (13), and for the F− statistic see the corresponding formula in the proof of
Theorem 5.1 in Supplementary Materials. Finally, with the standard notation ∇f for the gradient of
a scalar function f , and a parameter α which can take values 1 or 2, define

dα,m,k(u) =
1

u
α(k+1)

2

C1 sup
‖x‖≤u−

α
2

∥∥∇G(x)
∥∥+ C2

Kg

α

1

u
α
2

 (22)

with the constants C1, C2 (which depend on m and k), see Lemma 8.1 (B), Section 1, Appendix A.

Lemma 6.1 (Absolute error bound). If G(t) is differentiable in some neighborhood of zero, then for
any u > 0 the following inequalities

|P (T > u)−Kg tn−1(u)| ≤ d2,1,n−1(u),

|P (T > u)−Kg tn−2(u)| ≤ d2,1,n−2(u),

|P (T > u)−Kg Fn1−1,n2−1(u)| ≤ d1,n1−1,n2−1(u),

hold for the Student one- and two-sample t− and F− statistics accordingly.

Proof. The first two inequalities follow from (5), (11) and Corollary 8.1.1, Section 1, Appendix A, and
for the F−statistic we use Lemma 8.1 (B) with α = 1 and

√
u instead of u. �

Below follows the asymptotic formula for the relative error. For convenience we denote the distribution
tail of T under the null hypothesis H0 : g0 ∼MVN(0, σ21n) by t(u).

Lemma 6.2 (Relative error decrease rate). If G(t) is twice differentiable in some neighborhood of
zero, then

P (T > u)−Kgt(u)

P (T > u)
=
C3

uα
(1 + o (1)),

where

C3 =
αkB

(
m
2 ,

k
2

)
2
(
k
m

)k/2 LG,α
Kg

,

the triple (α,m, k) is set to (2, 1, n−1), (2, 1, n−2) and (1, n1, n2) for the Student one- and two- sample
t− and F− statistics respectively, and the constant LG,α is defined in Lemma 8.1 (C) in Section 1 of
Appendix A.

Proof. The result follows from formulas (5), (11) and (19) for P (T > u), Lemma 8.1 (C) in Section 1
of Appendix A, and formula (29). �

The bounds and asymptotic expressions for the case of an arbitrary null hypothesis H0 are derived
using basic calculus

P (T > u|H1)− (Kg1/Kg0)×P (T > u|H0) =
(
P (T > u|H1)−Kg1t(u)

)
−(Kg1/Kg0)×

(
P (T > u|H0)−Kg0t(u)

)
,
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and the absolute error of the approximation (1) is thus bounded by the linear combination of the
absolute errors considered in Lemma 6.1 above.

For the relative error we replace the two probabilities P (T > u|H1) and P (T > u|H0) by their
second order expansions given by Lemma 8.1 (C) in Section 1 of Appendix A, and then use (29).
Lemma 8.1 can also be generalized to obtain higher order series expansion for P (T > u) as u→∞.

7 Simulation study

Let T be one of the test statistics considered in the previous sections and t(u) be the distribution
tail of T under H0 : g ∼ MVN(0,1n). Next, we choose the sample size, specify the density g(x),
and simulate N random vectors X ∼ g. For each vector X we compute t∗ = T (X), the value of
the test statistic T , and two p-values pR = t(t∗) and pC = Kg t(t

∗) = Kgp
R. Finally, we plot the

empirical CDF of pR and pC over the range I(r) = [0, 1/r], where the Zoom Factor (Z.F.) parameter r
determines the tail region of interest. Here N = 10, 000×r so that I(r) contains approximately 10, 000
p-values (as if they were uniformly distributed) - this is to ensure that the tails of the distribution
of the p-values pR and pC are equally well approximated by the corresponding CDFs in all the tail
regions. The letters “R” and “C” in the notation for the p-values stand for “Raw”, i.e. computed
using t(u), and “Corrected”, i.e. computed using Kgt(u).

For the i.i.d case, let h(x), the marginal density of the vector X, be either Uniform(−1, 1), Standard
normal, Centered exponential, Cauchy, or t− density with 2 or 5 degrees of freedom. The constant
Kg was either evaluated explicitly in Mathematica or computed numerically in MATLAB, see Sup-
plementary Materials. Figures 2, 3 and 4 in Appendix B show empirical CDFs for different sample
sizes and Zoom Factor r varying between 20 and 1, 000, 000. One can see that our approximations are
very accurate in the tail regions for all the three test statistics, all sample sizes, and densities h(x)
considered in the study. Note also that the convergence speed is better for smaller sample sizes - this
is in agreement with the bounds for the absolute error in Lemma 6.1, see Section 6.

Next, we computed p-values for the Welch statistic and compared them with the p-values obtained
using the expression (14) in Corollary 3.1.1. Here “Raw” p-values are obtained using the Welch
approximation and the notation is pW . According to the plots in the top row of Figure 5, it may seem
that the p-values pW are uniformly distributed. However, if one “zooms in” to the tail region, see the
plots in the middle row of Figure 5, it is clear that the p-values obtained using Welch approximation
deviate significantly from the theoretical uniform distribution, while the corrected p-values pC follow
the diagonal line precisely. The advantage of using our tail approximations is fully convincing at Zoom
Factor 100, 000, see the bottom row of Figure 5.

Finally, we made similar plots for even more peculiar scenarios where the data was dependent and
non-stationary, see e.g. Figure 6. Our approximations were very accurate in all considered cases.

Appendix A: Supplementary theorems and lemmas

This Appendix is split into two parts - the first one introduces the key lemma which is used in Sections
2, 3 and 5, and the second contains useful notes on the regularity constraints (replacing them by simpler
criteria that can be used in practice) and shows how to weaken the assumption of continuity of the
density g(x).

1. Asymptotics of an integral of a continuous function over a shrinking ball

It was shown that the tails of the distribution of the Student one- and two-sample t−, Welch, and
F− statistics are determined by the asymptotic behavior of an integral of some function (different for
each of the tests) over a shrinking ball.
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Let G(x), x ∈ Rk be some real-valued function and consider the asymptotic behavior of

F (u) =

∫
· · ·
∫

∑
x2i<u

−2

G(x) dx (23)

for fixed k and u→∞.

Lemma 8.1. Set f(u) = α−1Fm,k(u
2), where Fm,k(·) is the tail of the F−distribution with m ≥ 1 and

k ≥ 2 degrees of freedom, and let Vol(Bk) be the volume of the unit k-ball Bk and B(x, y) be the Beta
function. The parameters α and m will be set later. With the above notation we have:

(A) If G is continuous at zero, then

F (u)

f(u)
= KG,α + o(1) as u→∞, (24)

where

KG,α =
αkB

(
m
2 ,

k
2

)
2
(
k
m

)k/2 Vol(Bk)G(0). (25)

(B) If G is differentiable in some neighborhood of zero, then for any u > 0

|F (u)−KG,α f(u)| ≤ C1

uk+1
sup

‖x‖≤u−1

∥∥∇G(x)
∥∥+ C2

KG,α

α

1

uk+2
, (26)

where

C1 = Vol(Bk) and C2 =
k(k +m)

m(k + 2)

(
k
m

)k/2
B
(
m
2 ,

k
2

) , (27)

and ∇G(x) is a gradient of G evaluated at point x.

(C) If G is twice differentiable in some neighborhood of zero, then

uk+2 (F (u)−KG,α f(u)) = LG,α + o(1) as u→∞, (28)

where

LG,α = C1
tr (Hess (G(0)))

2(k + 2)
− C2

KG,α

α
,

tr(A) is the trace of a square matrix A, and Hess (G(x)) is the Hessian matrix of G evaluated at point
x. Constants C1 and C2 are given by (27).

Proof. The first statement follows from the asymptotic expansion for the F−distribution tail

f(u) =
2
(
k
m

)k/2
αkB

(
m
2 ,

k
2

) [ 1

uk
− k2(k +m)

2m(k + 2)

1

uk+2

]
+ o

(
1

uk+2

)
. (29)

Indeed, changing variables x = y/u we write

F (u) =

∫
· · ·
∫

∑
x2i<u

−2

G(x)dx =
1

uk

∫
· · ·
∫

Bk

G(y/u)dy. (30)
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Continuity of G at zero implies uniform convergence of G(y/u) to G(0) over the ball Bk, and thus

F (u) = Vol (Bk)G(0)
1

uk
(1 + o(1)). (31)

Dividing (31) by (29) we get that the value of KG,α in (24) coincides with (25).

Now assume G is differentiable in some neighborhood of zero and consider the Lagrange form of
the Taylor expansion of G(y/u). The latter and (30) give

|F (u)−KG,α f(u)| ≤ 1

uk

∣∣∣Vol (Bk)G(0)− ukKG,α f(u)
∣∣∣+

1

uk+1

∣∣∣∣∣∣∣
∫
· · ·
∫

Bk

∇G
(
ξ(y)y

)
yTdy

∣∣∣∣∣∣∣ ,
where 0 ≤ ξ(y) ≤ 1/u. The second summand in the right-hand side above is bounded by

1

uk+1
Vol (Bk) sup

Bk

‖∇G(x/u)‖,

and the bound for the remaining summand follows from (29), where we note that f(u) is bounded by
the two successive partial sums in its alternated series (29) and that the factors before Vol (Bk)G(0)
in the expression for KG,α and before the square brackets in (29) cancel out. The last step is to use
formulas (25) and (27) to express Vol (Bk)G(0) in terms of KG,α and C2.

We move on to the proof of (28). Taylor expansion for G(y/u) yields

F (u) =
1

uk
Vol (Bk)G(0) +

1

uk+2

∫
· · ·
∫

Bk

yHess (G (0)) yT

2
dy + o

(
1

uk+2

)
,

where we took into account that the integral of the odd function ∇G(0)y over the ball Bk is zero.
Neglecting odd terms in yHess (G (0)) yT we have∫

· · ·
∫

Bk

yHess (G (0)) yTdy =
∑∫

· · ·
∫

Bk

∂2G(0)

∂2yi
y2
i dy =

=

(∑ ∂2G(0)

∂2yi

)∫
· · ·
∫

Bk

∑
y2
i

k
dy = Vol (Bk)

tr(Hess(G(0))

k + 2
,

where the last integral was computed using spherical coordinates. Substituting the second order Taylor
expansion for F (u) and expression for f(u) in (29) into the left-hand side of (28) we get LG,α. �

Note that the expression α−1KG,α does not depend on α and thus the right-hand side of (26) and (28)
depends only on the integrand G in (23) and parameters m and k.

Corollary 8.1.1. Let tk(u) be the Student t−distribution tail with k degrees of freedom. If G is
continuous at zero, then

F (u)

tk(u)
= KG,2 + o(1) as u→∞,

where KG,2 is given by (25) with m = 1. Statements (B) and (C) also hold for f(u) = tk(u), provided
m = 1 and α = 2.

Proof. Note that tk(u) = 1
2F1,k(u

2) and apply Lemma 8.1. �
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2. A note on the regularity constraints and the continuity assumption

The aim of this section is to replace the technical constraints (3), (9) and (17) of Theorems 2.1, 3.1
and 5.1 by simpler criteria, and to weaken the assumption of continuity of the multivariate density
g(x) of the data vector X.

The nature of the regularity constraints (3), (9) and (17) becomes clear if one notes that all the
proofs share a common part, which is to apply Lemma 8.1 (A) or Corollary 8.1.1 to the representation
for the distribution tail of the test statistic T , see (7) and (13), and then to use dominated convergence
theorem to show that the corresponding function G(t) is continuous at zero. The only purpose of the
regularity constraints is to ensure that the limiting and integration operations are interchangeable,
and that the resulting constant Kg is finite. Omitting the regularity assumptions (3), (9) and (17) we
immediately obtain

Theorem 9.1 (“liminf” analogue of Theorems 2.1, 3.1 and 5.1). Let T be the Student one- or two-
sample t−statistic or an F−statistic and let t(u) be the distribution tail of T under the null hypothesis
H0 : g ∼MVN(0, σ21n), where σ2 > 0 and 1n is the identity matrix. If g is continuous, then

lim inf
u→∞

P (T > u)

t(u)
≥ Kg,

where the constant Kg is given by (4), (10) and (18) accordingly, though it may not be finite.

Next, we give the sufficient (but not necessary) conditions for the regularity constraints of Theorems
2.1, 3.1 and 5.1 to hold. One may expect that formulas (5), (11) and (19) hold when g is continuous
and Kg is finite, but proving or disproving this claim is not easy and it remains an open problem.

Lemma 9.1. If g(x) is bounded and there exist positive constants R, C and δ such that

g(x) ≤ C

‖x‖n+δ
for ‖x‖ > R, (32)

then the assumptions (3), (9) and (17) of Theorems 2.1, 3.1 and 5.1 hold.

Proof. The integrals in (3), (9) and (17) will be estimated by partitioning the integration domain
into several disjoint parts Di and D∗j and analyzing the integrals over these sets separately. For non-
compact domains D∗j the integrand will be estimated from above using the bound (32) and showing
that this bound is integrable. The integrability over the compact domains Di follows from the fact
that g(x) is bounded. In the notation below let G(r), G(ω, r) and G(x, r) be the integrands in (3),
(9) and (17) accordingly.

Student’s one-sample t−statistic: Set D1 = [0, R] and D∗1 = [R,∞]. Since ‖I‖ = 1 and I and ξ
are orthogonal, we have ‖r (I + ξ) ‖2 = r2(1 + ‖ξ‖2) ≥ r2 and the bound (32) gives∫

D∗1

G(r)dr <

∞∫
R

C

r1+δ
dr <∞.

Student’s two-sample t−statistic: Setting D1 = [−π/2, π/2] × [0, R] and D∗1 = [−π/2, π/2] × [R,∞]
and noting that I1, I2 and ξ are mutually orthogonal we get

‖r
(

cos(ω − ω0)I1 + sin(ω − ω0)I2 + ξ
)
‖2 = r2(1 + ‖ξ‖2) ≥ r2,

where we used the fact that ‖I1‖ = ‖I2‖ = 1. Now the bound (32) implies

∫
D∗1

G(ω, r)dr <

π/2∫
−π/2

cos(ω)n−2dω ×
∞∫
R

C

r1+δ
<∞.
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F−statistic: Consider the following partition of Rn1+1: D1 =
{

(x, r) : ‖x‖ ≤ R , |r| ≤ R
}

, D∗1 ={
(x, r) : ‖x‖ ≤ R , |r| > R

}
, and D∗2 =

{
(x, r) : ‖x‖ > R

}
. Since I and ξ are orthogonal and ‖I‖ = 1

we have ‖ (x, rI + s1(x)ξ) ‖2 = ‖x‖2 + r2 + s1(x)2‖ξ‖2 ≥ ‖x‖2 + r2, and then∫
· · ·
∫

D∗1

G(x, r)drdx <

∫
· · ·
∫

‖x‖≤R

s1(x)n2−1dx ×
∫
|r|>R

C

|r|n+δ
dr <∞

and ∫
· · ·
∫

D∗2

G(x, r)drdx <

∫
· · ·
∫

‖x‖>R

∞∫
−∞

s1(x)n2−1

(‖x‖2 + r2)
n+δ
2

drdx <

<

∫
· · ·
∫

‖x‖>R

s1(x)n2−1

‖x‖n−1+δ
dx ×

∞∫
−∞

1

(1 + r2)n/2
dr <∞,

where the integral in the last inequality is computed passing to spherical coordinates. �

Note that in the i.i.d case the condition (32) is equivalent to the existence of the n− 1 + δ moment of
the marginal density h(x). For the Student one-sample t−test, however, the criterium of Lemma 9.1
is “too strict”, see below.

Definition. Multivariate density g(x) has the asymptotic monotonicity property if there exists
a constant M such that for any 1 ≤ i ≤ n and any constants cj , j 6= i, the function f(x) =
g(c1, .., ci−1, x, ci+1, .., cn) is monotone on [M,∞).

Lemma 9.2. If Kg is finite and g(x) is bounded and has the asymptotic monotonicity property, then
the assumption (3) holds.

Proof. Setting ε equal to (2
√
n)−1 and using asymptotic monotonicity property we get that the integral

in (3) is bounded by
2M
√
n∫

0

rn−1 sup
‖ξ‖< 1

2
√
n

g
(
r (I + ξ)

)
dr +

∞∫
2M
√
n

rn−1g

(
r
I

2

)
dr <∞.

The first summand is finite owing to the boundness of g and the finiteness of the second summand is
equivalent to the finiteness of Kg. �

Asymptotic monotonicity and finiteness of Kg are very mild constraints. For the i.i.d case of the
Student one-sample t−test, for example, Lemma 9.2 implies that the statement of Theorem 2.1 holds
for any continuous marginal density h(x) that has monotone tails and such that Kg < ∞, and the
latter assumption is weaker than the assumption of existence of the first moment and holds even for
such heavy tailed densities as Cauchy.

Unfortunately there is no asymptotic monotonicity criterium analogue for the case of the Student
two-sample t− and F−statistics, and the constant Kg in (10) and (18) may be infinite for some
heavy-tailed densities, cf. (Bradley, 1952a).

Finally, in the proofs of Theorems 2.1, 3.1 and 5.1 one may have used the “almost everywhere”
version of the dominated convergence theorem. For the Student one-sample t−statistic the assumption
of continuity of g can be replaced by the assumption that g(x) is continuous function of x ∈ Rn a.e.
on the set of points x = rI, r > 0, for the Student two-sample t−statistic - on the set of points
x = r

(
cos(ω − ω0)I1 + sin(ω − ω0)I2 + z

)
, where r > 0 and ω ∈ [−π/2 , π/2], and for the F−statistic

- on the set of points x = Rn1 × rI, r ∈ R. Here a.e. means almost everywhere with respect to the
Lebesque measure induced by the measure of the linear space L in (3), (9) and (17).
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Appendix B: Figures
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Figure 2. The eCDF of the p-values for the Student one-sample t−test. The empirical CDFs of the
raw and corrected p-values pR and pC are shown in black and red accordingly. The top, middle and
bottom rows correspond to the Uniform(−1, 1), Centered exponential and Cauchy densities, and
left, middle and right columns correspond to sample sizes n = 2, n = 3 and n = 5. The blue diagonal
line is the theoretical uniform distribution. The axes are scaled according to the Zoom Factor (Z.F.)
parameter r in the title of the graphs.
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Figure 3. The eCDF of the p-values for the Student two-sample t−test. The empirical CDFs of the
raw and corrected p-values pR and pC are shown in black and red accordingly. The top, middle and
bottom rows correspond to the Uniform(−1, 1), Exponential and t2 densities, and left, middle and
right columns correspond to sample sizes (n1 = 2, n2 = 2), (n1 = 2, n2 = 3), and (n1 = 3, n2 = 5).
The blue diagonal line is the theoretical uniform distribution. The axes are scaled according to the
Zoom Factor (Z.F.) parameter r in the title of the graphs.
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Figure 4. The eCDF of the p-values for the F−test (equality of variances). The empirical CDFs of
the raw and corrected p-values pR and pC are shown in black and red accordingly. The top, middle
and bottom rows correspond to the Uniform(−1, 1), Exponential and t5 densities, and left, middle
and right columns correspond to sample sizes (n1 = 2, n2 = 2), (n1 = 2, n2 = 3), and (n1 = 3, n2 = 5).
The blue diagonal line is the theoretical uniform distribution. The axes are scaled according to the
Zoom Factor (Z.F.) parameter r in the title of the graphs.
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Figure 5. The distribution tails of the p-values for the Welch test. The empirical CDFs of the raw
(Welch-Satterthwaite) and corrected p-values pR and pWS for the Standard Normal density are shown
in black and red accordingly. The top, middle and bottom rows correspond to the different values of
the Zoom Factor (Z.F.) parameter r shown on the right, and the axes are scaled accordingly. The
left, middle and right columns correspond to sample sizes (n1 = 2, n2 = 2), (n1 = 2, n2 = 3), and
(n1 = 3, n2 = 5). The blue diagonal line is the theoretical uniform distribution.
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One-sample t− test Two-sample t− test F−test
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Figure 6. The effect of dependency and non-homogeneity of data on P (T > u) as u→∞. The em-
pirical CDF of raw (black) and corrected (red) p-values. Analogue of Figures 2, 3 and 4 for dependent
(top row - positively correlated observations; middle row - negatively correlated observations) and
non-homogeneous (bottom row, unequal variances) data. Multivariate normal case with covariance
matrices

Σ1 =

 σ2
1 ρσ1σ2 0

ρσ1σ2 σ2
2 ρσ2σ3

0 ρσ2σ3 σ2
3

 , Σ2 =


σ2

1 ρσ1σ2 0 0 0
ρσ1σ2 σ2

2 0 0 0
0 0 σ2

1 ρσ1σ2 0
0 0 ρσ1σ2 σ2

2 ρσ2σ3

0 0 0 ρσ2σ3 σ2
3

 .
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Supplementary Materials

Supplementary Materials [PDF] - Remarks on Theorem 1.1 and its application to real data; extended
version of the literature review; comparison of the result of Theorem 1.1 with the exact distribution
of the Welch statistic; proof of Theorem 5.1. All materials are available at www.zholud.com.

MATLAB

[OST/TST/WELCH /F ]+ComputeKg.m - compute Kg for the Student one- and two- sample t−,
Welch, and F− statistics using adaptive Simpson or Lobatto quadratures. Here g is an arbitrary
multivariate density.1

[TST/WELCH /F ]+ComputeKgIS+.m - the same as above but for the case where samples are
independent.2

[OST/TST/WELCH /F ]+ComputeKgIID+.m - the same as above but assuming that the samples
consist of i.i.d. random variables.2

RunSimulation+[IID/MVN ]+.m - perform simulation study for i.i.d. and dependent/non-homogeneous
cases, see Section 7 and Appendix B.

Wolfram Mathematica

[OST/TST/WELCH /F ]+ComputeKg.nb - compute the exact expression for Kg for an arbitrary
multivariate density g and given sample size(s). We include a number of examples, such as evaluation
of Kg for the zero-mean Gaussian case with an arbitrary covariance matrix Σ; the “unequal variances”
case for the Student two-sample t− and Welch statistics; and evaluation of Kg for the densities con-
sidered in the simulation study.

OSTComputeKgIID.nb - verifies the constants in Table 1 for the i.i.d. case of the Student one-sample
t−statistic.

TSTExactPDF.nb and WELCHExactPDF.nb - the exact distribution for the Student two-sample
t− and Welch statistics for odd sample sizes, see (Ray and Pitman, 1961).
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