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Extremes of Shepp statistics for Gaussian random walk

Dmitrii Zholud∗

Abstract

Let (ξi, i ≥ 1) be a sequence of independent standard normal random variables and let Sk =
k∑

i=1

ξi be the corresponding random walk. We study the renormalized Shepp statistic M
(N)
T =

1√
N

max
1≤k≤TN

max
1≤L≤N

(Sk+L−1 − Sk−1) and determine asymptotic expressions for the probability

P
(
M

(N)
T > u

)
when u,N and T → ∞ in a synchronized way. There are three types of relations

between u and N that give different asymptotic behavior. For these three cases we establish the

limiting Gumbel distribution of M
(N)
T when T,N → ∞ and present corresponding normalization

sequences.
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1 Introduction

Let (ξi, i ≥ 1) be a sequence of independent standard normal random variables, and let Sk =
k∑
i=1

ξi,

with S0 = 0, be the corresponding random walk. Introduce the Shepp and the closely related Erdös-
Rényi statistics

WN,L = max
1≤l≤L

TN,l and TN,L = max
1≤k≤N

Sk+L−1 − Sk−1,

and define

ζ
(N)
L (k) =

1√
N

(Sk+L−1 − Sk−1) =
1√
N

k+L−1∑
i=k

ξi.

We study the asymptotic behavior of the probability

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
(1)

when u → ∞, N → ∞ in a coordinated way. In fact, (1) is the probability of exceeding the level
u
√
N by the Shepp statistic WTN,N . Related problems were described in Erdös and Rényi (1970),
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Piterbarg (1991), Kozlov (2004) and Piterbarg and Kozlov (2002). Paper Piterbarg (1991) presents the
asymptotic behavior of the probability of moderate deviations for the Erdös-Rényi statistic under the
assumption of sub-gaussian distribution of random walk step and papers Kozlov (2004) and Piterbarg
and Kozlov (2002) study large deviations of the Erdös-Rényi and Shepp statistics for Cramér random
walk. To get the full picture of all possible cases of asymptotic behavior of (1) we reformulate the

result obtained by A.M. Kozlov in Kozlov (2004). Let ψ(u) = 1√
2π

∞∫
u
e−x

2/2dx be the tail of standard

normal distribution and introduce the finite positive constant

Jθ = lim
l→∞

1

θl
Eexp

{
θ max

0≤n<l
(
√

2Sn − θn)

}
.

Theorem 1.1 (A.M. Kozlov). Assume u→∞, N →∞, u√
N
→ θ,

where 0 < θ <∞. If Tu2ψ(u)→ 0 and Tu2 →∞, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ JθTu2ψ(u).

The present paper extends this result to moderate and excessively large deviations. For comparison
and ease of reference we also restate the main result of Zholud (2008) which deals with the continuous
time case and is crucial in proving the asymptotic formula for the case of moderate deviations. Let
W (·) be the standard Brownian motion.

Theorem 1.2 (D. Zholud). Assume u→∞. If Tu2 →∞ and
Tu2ψ(u)→ 0, then

P

(
max
0≤t≤T
0≤s≤1

(W (t+ s)−W (t)) > u

)
= HTu2ψ(u)(1 + o(1)),

where the constant

H = lim
B→∞

lim
A→∞

A−1e−
A+B

2 E exp

(
max
0≤t≤A
0≤s≤B

(W (t+ s+A)−W (t))

)

is finite and positive.

The case of moderate deviations (i.e. u√
N
→ 0 when u → ∞) is intermediate between Theorem 1.1

and Theorem 1.2.

Theorem 1.3. Assume u→∞, N →∞, u√
N
→ 0. If Tu2 →∞ and Tu2ψ(u)→ 0, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ HTu2ψ(u).

Indeed, this asymptotic behavior is different from the one in Theorem 1.1 in the constant multiplier
and coincides with the asymptotic behavior for the case of continuous time, Theorem 1.2. The proof
of Theorem 1.3 can be found in Section 2.

A further comment is that if N → ∞ and u is fixed, then we could apply weak convergence of
a random walk to the Wiener process, and the probabilities in Theorem 1.2 and Theorem 1.3 would
coincide. However Section 3 shows that just applying weak convergence under the probability sign
leads to incorrect results, and that the rigorous and somewhat technical proof of Theorem 1.3 is indeed
needed. The main result of this section is as follows.
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Theorem 1.4. Assume u→∞, N →∞, u√
N
→∞. If TN ≥ 1 and TNψ(u)→ 0, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ [TN ]ψ(u).

This theorem completes full description of the possible asymptotic behavior of (1) under various
relations between u and N .

Finally, using the results of Sections 2 and 3 we obtain limit Gumbel distribution for M
(N)
T when

T,N →∞. If one of the following relations holds,

1)
2 lnT

N
→ 0. 2)

2 lnT

N
→ θ2 > 0. 3)

2 lnT

N
→∞,

then, there exist functions aT and bT such that for any fixed x

P

(
max

0<k≤TN
0<L≤N

aT (ζ
(N)
L (k)− bT ) ≤ x

)
= e−e

−x
+ o(1).

The corresponding theorems and normalizing constants can be found in Section 4. A similar result
for standardized increments of Gaussian random walk is obtained in Kabluchko (2007).

There is also extensive literature on a.s. convergence of related quantities, see e.g. Shepp (1964),
Erdös and Rényi (1970) and Frolov (2004).

2 Moderate deviations of the Shepp statistic

In this section we prove Theorem 1.3. That is we find the asymptotic behavior of the probability (1)
when u → ∞ and u/

√
N → 0. It will be shown that it coincides with the asymptotic behavior for

continuous time case, given in Theorem 1.2. The idea of the proof is similar to Zholud (2008) and we
divide it into two main parts.

First, for any positive constant B we will focus on the asymptotic behavior of maximum of ζ
(N)
L (k)

over a thin layer
{(k, L) : 0 < k ≤ TN, (1−Bu−2)N < L ≤ N}.

Within this area and for large u, ζ
(N)
L (k) behaves approximately like ζ

(N)
N (k), and it will be shown

that it is possible to determine the asymptotic behavior using similar techniques as used for stationary
process in Piterbarg (1991).

Second, knowing the asymptotic behavior of maximum of the random variable ζ
(N)
L (k) over the

area of its maximum variance, we will show that the maximum over the complementary set {(k, L) :
0 < k ≤ TN, 0 < L ≤ (1−Bu−2)N} gives a neglible contribution to the probability in (1).

The proof of the first part is based on the Double Sum Method. The lemma below is the analog
of Lemma 2.1 in Zholud (2008). Let A and B be positive constants and set p = Au−2, q = Bu−2. By
A0(u) we refer to the set of pairs (k, L) ∈ [0, pN ]× ((1− q)N,N ], where k and L are positive integers.

Lemma 2.1. Let u→∞. Then

P

(
max
A0(u)

ζ
(N)
L (k) > u

)
= HB

A

1√
2πu

e−
u2

2 (1 + o(1)), (2)

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
.
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Proof: Let [x] denote the integer part of x. We have

max
A0(u)

ζ
(N)
L (k) = max

A0(u)

1√
N

[k+L−1]∑
i=k

ξi = 1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
A0(u)

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−q)N ]+1

ξi

)
.

The L + [pN ] − [(1 − q)N ] random variables in the sums inside the “max” sign are independent
of the variables in the sum outside the “max” sign. We renumber the variables inside the maximum
sign and denote them by ξ

′
i. Thus,

P

(
max
A0(u)

ζ
(N)
L (k) > u

)
= P

(
1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
0<k≤pN
0<L≤qN

1√
N

k+L+[pN ]−1∑
i=k

ξ
′
i > u

)

=
∞∫
−∞

e
− v2

2σ2√
2πσ2

P

(
max

0<k≤pN
0<L≤qN

1√
N

(S′k+L+[pN ]−1 − S
′
k−1) > u− v

)
dv,

where σ2 = [(1−q)N ]−[pN ]
N and S′k =

k∑
i=1

ξ
′
i with S′0 = 0.

For the sake of briefness introduce

M(k, L) = max
0<k≤pN
0<L≤qN

1√
pN

(S′k+L+[pN ]−1 − S
′
k−1).

Using the change of variables v = u−
√
Aw
u , and recalling that u

√
p =
√
A, the probability in question

is seen to equal to

√
A√

2πσ2u

∞∫
−∞

e−
(u−
√
Aw/u)2

2σ2 P (M(k, L) > w) ds =
√
A√

2πσ2u
e−

u2

2σ2

∞∫
−∞

e−
Aw2/u2

2σ2 e
√
Aw
σ2 P (M(k, L) > w) dw. (3)

By weak convergence of a random walk to the Wiener process, for any w,

lim
pN→∞

P (M(k, L) > w) = P

(
max
0≤t≤1

0≤s≤B/A

W (t+ s+ 1)−W (t) > w

)
,

where W (·) is the standard Wiener process; using Lemma 1 Piterbarg (1991) it is straightforward to
show that

P (M(k, L) > w) ≤ 2e−
w2

24 .

Thus, by dominated convergence

∞∫
−∞

e−
Aw2/u2

2σ2 e
√
Aw
σ2 P (M(k, L) > w) dw =

∞∫
−∞

e
√
AwP

(
max
0≤t≤1

0≤s≤B/A

(W (t+ s+ 1)−W (t)) > w

)
dw + o(1)

= 1√
A
E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
+ o(1).

Finally, since σ2 = 1− p− q + o(u−2) the factor in front of the integral (3) is equal to
√
A√

2πu
e−

u2

2
(1+p+q+o(u−2)(1 + o(1)) =

1√
2πu

e−
u2

2

√
Ae−

A+B
2 (1 + o(1))

and we obtain (2). �
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Our next aim is to consider the layer [0, TN ] × ((1− q)N,N ]. We use Lemma 2.1 and the Bon-
ferroni inequality to obtain estimates of the probability of high level excursions of the maximum of

ζ
(N)
L (k). Then we will show that estimates from below and from above are asymptotically equivalent.

Define ∆k(u) = {kpN + 1, ..., (k + 1)pN} × {(1− q)N + 1, ..., N}. For ease of notation we suppress

dependence on u and assume that pN and qN are integers. Using stationarity of ζ
(N)
L (k) with respect

to k, we obtain that

(Tp−1 + 1)P

(
max
∆0

ζ
(N)
L (k) > u

)
≥ P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)

≥ (Tp−1 − 1)P

(
max
∆0

ζ
(N)
L (k) > u

)

−
∑

0≤l,m≤Tp−1+1
l 6=m

P

(
max

∆l

ζ
(N)
L (k) > u,max

∆m

ζ
(N)
L (k) > u

)
.

Let pl,m denote the summands in the last sum. This sum, due to stationarity, does not exceed

2(Tp−1 + 1)

Tp−1+1∑
n=1

p0,n.

Estimating the probabilities p0,n from above we will show that the double sum is negligible, and thus
the upper and lower estimates in the Bonferroni inequality are asymptotically equivalent. The esti-
mates of p0,n are obtained in the same manner as in Piterbarg (1991). The proof will be divided into
four parts.

Case 1.1: 1 ≤ n < n0. The value of n0 will be chosen later. We have

p0,n ≤ P

 max
0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u, max

pN(n+1)/2<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u



= 2P

 max
0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u

−P

 max
0<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u

 .

Applying Lemma 2.1 we obtain that

p0,n ≤
1√
2πu

(2HB
A(n+1)/2 −H

B
A(n+1))e

−u
2

2 (1 + gn(u,N)), (4)

where gn(u,N)→ 0.

Case 1.2: n0 ≤ n ≤ εp−1 − 1. The value of ε will be chosen later. First, introduce random
variables

η = 1√
N

(1−q)N∑
i=(n+1)pN+1

ξi, ζ1 = 1√
N

npN∑
i=pN+1

ξi, ζ2 = 1√
N

npN+(1−q)N∑
i=pN+N+1

ξi.
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Then, postponing the explanation of the last equality,

p0,n = P

(
η + ζ1 + max

∆0

1√
N

(
pN∑
i=k

+
(n+1)pN∑
i=npN+1

+
k+L−1∑

i=(1−p)N+1

)
ξi > u,

η + ζ2 + max
∆n

1√
N

(
(n+1)pN∑
i=k

+
pN+N∑

i=(1−q)N+1

+
k+L−1∑

i=npN+(1−q)N+1

)
ξi > u

)

= P

(
η + ζ1 + max

∆0

ζ
′
L(k) > u, η + ζ2 + max

∆0

ζ
′′
L(k) > u

)
,

where

ζ
′
L(k) =

1√
N

k+L−(1−q−2p)N−1∑
i=k

ξ
′
i

 and ζ
′′
L(k) =

1√
N

k+L−(1−2q−2p)N−1∑
i=k

ξ
′′
i

 . (5)

The main idea of this representation is that we consider ζ
(N)
L (k) for all possible pairs (k, L) ∈ ∆0

and “extract” the common summand η + ζ1. Analogously, for each (k, L) ∈ ∆n we “extract” the

summand η + ζ2. These summands are always present in ζ
(N)
L (k) when k, L are within the corre-

sponding sets. It is easy to check that for ε < 1/2 and u large, the restriction on n ensures that the
variables η, ζ1, ζ2 are independent. By construction they are also independent of the variables that
remain inside the maximum signs. The latter are renumbered and called ξ′i and ξ′′i in such a way
that (5) holds. Although ξ′i and ξ′′j may denote the same r.v. ξr, in our case the dependence between
ζ ′L(k) and ζ ′′L(k) does not matter. What is essential is that η, ζ1, ζ2, are independent of ζ ′L(k) and of
ζ ′′L(k). We now omit the arguments for ζ ′L(k) and ζ ′′L(k), and the set over which the maximum is taken.

From (5) it follows that

p0,n ≤ P
(
η + ζ1+ζ2

2 + max ζ′+max ζ′′

2 > u
)

= 1√
2πσ2

∞∫
−∞

P
(
ζ1+ ζ2

2 + max ζ′+ max ζ′′

2 > u− v
)
e−

v2

2σ2 dv,

where σ2 now is equal to [(1−q)N ]−[(n+1)pN ]
N . Changing variables v = u−√ps we get

p0,n ≤
√
A√

2πσ2u
e−

u2

2σ2

∞∫
−∞

P
(
ζ1+ ζ2

2
√
p + max ζ′+ max ζ′′

2
√
p > s

)
e
√
As
σ2 ds

= σ√
2πu

e−
u2

2σ2 Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

+max ζ′+ max ζ′′
2
√
p

)

= σ√
2πu

e−
u2

2σ2 Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

)
Ee

√
A
σ2

(
max ζ′+ max ζ′′

2
√
p

)
. (6)

We now estimate the three factors that form the bound for p0,n. Since σ2 = 1− q− (n+ 1)p+ o(u−2),
for sufficiently large u the factor in front of the expectation is bounded by

σ√
2πu

e−
u2

2σ2 ≤ 2√
2πu

e−
u2

2 e−
A(n+1)+B

2 .

Next, since random variable ζ1+ζ2
2
√
p is normally distributed, has zero mean and its variance does not

Copyright c© 2017 by Dmitrii Zholud
www.zholud.com 6

http://www.zholud.com


Extremes of Gaussian Random Walk Increments

exceed (n− 1)/2, we have that

Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

)
≤ e

A(n−1)

4σ4 .

In order to estimate the remaining expectation we will require an estimate of the probability

P

(
max ζ ′ + max ζ ′′

2
√
p

> s

)
, s > 0.

According to notation in (5) and denoting S
′′
k =

k∑
i=1

ξ
′′
i we see that the latter equals

P

(
max
∆0

(
S
′

k+L−(1−q−2p)N−1 − S
′
k−1

)
+ max

∆0

(
S
′′

k+L−(1−2q−2p)N−1 − S
′′
k−1

)
> 2
√
pNs

)
≤ P

(
max
∆0

S
′

k+L+(q+2p)N−N−1 + max
0<k≤pN

−S′k−1

+ max
∆0

S
′′

k+L+(2q+2p)N−N−1 + max
0<k≤pN

−S′′k−1 > 2
√
pNs

)
≤ 4P

(
max

0<k≤(2q+3p)N
S
′
k >

√
pN
2 s

)
≤ 4e−

1
8( A

3A+2B
s2) < 4e−

s2

24 , (7)

where we applied Lemma 1 Piterbarg (1991) in the second to the last step. Thus, for any posi-
tive t we obtain the following estimate

Ee
t
(

max ζ′+ max ζ′′
2
√
p

)
=
∞∫
−∞

tetsP
(

max ζ
′
+max ζ

′′

2
√
p > s

)
ds ≤ 1 + 4t

∞∫
0

ets−
s2

24 ds ≤ 1 + 4
√

24πte6t2 . (8)

Then we put t =
√
A
σ2 and when A is large, the estimate (8) gives

Ee

√
A
σ2

(
max ζ′+ max ζ′′

2
√
p

)
<

8
√

24π

σ2

√
Ae

6A
σ4 .

We are now ready to estimate p0,n. Gathering the estimates of the factors in (6) we get

p0,n ≤
16
√

24π
σ2

√
A

√
2πu

e−
u2

2 e
−An

(
1
2
− 1

4σ4

)
+A

(
23
4σ4
− 1

2

)
−B

2 .

Owing to the restriction n0 ≤ n ≤ εp−1 − 1 we have σ2 = 1 − q − (n + 1)p + o(u−2) > 1 − 2ε, and
choosing ε such that 4(1− 2ε)2 = 3 we conclude that

p0,n ≤
C1

√
A√

2πu
e−

u2

2 e−A
n−43

6
−B

2 , (9)

where C1 is some positive constant.

Case 1.3: εp−1 ≤ n ≤ p−1 + 1. In much the same way the representation (5) gives

p0,n ≤ P

(
2η + ζ1 + ζ2 + max

∆0

ζ ′L(k) + max
∆0

ζ ′′L(k) > 2u

)
.

However, when n ≥ εp−1, it may turn out that the sum in the expression for η is empty. In this
case we set η = 0. We should also change the upper limit of summation in the definition of ζ1 to
min{npN, (1−p)N}, and the lower limit of summation for ζ2 to max{2pN+(1−p)N+1, (n+1)pN+1}.
Therefore, ζ ′ and ζ ′′, may consist of a smaller number of summands.
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For any positive t, multiplying both parts of the inequality under the probability sign by t/2 and
applying Chebyshev’s inequality to the exponents, we obtain that

p0,n ≤ e−tuEe
t
(
η+

ζ1+ζ2
2

+max ζ′+max ζ′′
2

)

= e−tuEe
t
(
η+

ζ1+ζ2
2

)
Ee

t
(

max ζ′+max ζ′′
2

)
. (10)

Although ζ ′ and ζ ′′ may contain smaller number of summands, it can be seen that this does not
change the proof of (7) sufficiently. Thus the estimate (8) remains valid and

Ee
t
(

max ζ′+max ζ′
2

)
< 1 + 4

√
24πt
√
pe6t2p. (11)

Next, according to the remark about limits of summation in ζ1 and ζ2, the variance of ζ1+ζ2
2 does not

exceed (n−1)p
2 . The variance of η does not exceed max{0, 1−(n−1)p}. Applying Laplace transformation

to the sum η + ζ1+ζ2
2 , and since restrictions on n provide (ε− p)/2 ≤ (n− 1)p/2 ≤ 1/2,

Ee
t
(
η+

ζ1+ζ2
2

)
≤ e

t2 max

{
(n−1)p

2 ,1− (n−1)p
2

}
2 < e

t2(1−ε/4)
2 . (12)

So, gathering (12), (11) and (10),

p0,n ≤ (1 + 4
√

24πt
√
pe6t2p)e

t2(1−ε/4)
2 e−tu.

Setting t = u
1−ε/4 , we obtain the desired estimate

p0,n ≤ C2

√
Ae6Ae

− u2

2(1− ε4 ) . (13)

Case 1.4: n > p−1 + 1. In this case the two events inside the probability p0,n are independent and
Lemma 2.1 gives

p0,n ≤ 2(HB
A )2ψ(u)2. (14)

The bounds obtained in cases 1.1-1.4 allow us to estimate p0,n for any value of n. Let p0(u) =
1√
2πu

e−
1
2
u2 . Estimates (4), (9), (13), (14) imply that

2(Tp−1 + 1)
Tp−1+1∑
n=1

p0,n ≤ 2(Tp−1 + 1)

×

{(
n0−1∑
n=1

(
2HB

A(n+1)/2 −H
B
A(n+1)

)
(1 + gn(u,N)) +

∞∑
n=n0

C1

√
Ae−A

n−43
6
−B

2

)
p0(u)

+ p−1C2

√
Ae6Ae

− u2

2(1− ε4 ) + Tp−12(HB
A )2ψ(u)2

}
.

Recall that p−1 = u2/A. If Tu2 → ∞ and Tu2ψ(u) → 0, then using the estimate above and the
Bonferroni inequality on page 5 we conclude that

lim
u,N

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≤ A−1HB

A

and (15)
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lim
u,N

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≥ A−1HB

A

− 2A−1
n0−1∑
n=1

(
2HB

A(n+1)/2 −H
B
A(n+1)

)
− 2C1e

−B2√
A

∞∑
n=n0

e−A
n−43

6 .

It was proved in Zholud (2008) that the limit

HB = lim
A→∞

A−1HB
A , HB > 0

exists. Thus A−1
(

2HB
A(n+1)/2 −H

B
A(n+1)

)
→ 0, when A → ∞. Choosing n0 greater than 43 and

letting A in (15) tend to infinity we obtain the asymptotic behavior of the probability of high level

excursions for maximum of ζ
(N)
L (k) over the “upper” layer,

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)
= HBTu2p0(u)(1 + o(1)). (16)

The second part of the proof is to show that the asymptotic behavior of the probability (1) is deter-

mined by the behavior of ζ
(N)
L (k) over the upper layer, which corresponds to the area of maximal

variance of the field. Thus we need to estimate the probability of the high level excursion of the

maximum of the random walk over the complementary set. Applying stationarity of ζ
(N)
L (k) with

respect to k we obtain the following estimate

P

(
max

0<k≤TN
0<L≤(1−q)N

ζ
(N)
L (k) > u

)
≤ (Tp−1 + 1)

p−1−1∑
n=1

×P

(
max

0<k≤pN
(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) > u

)
. (17)

Let pn denote the probability under the sum sign. Bounds for pn will be obtained in two steps.

Case 2.1: n < 13
16p
−1 − 1. The restriction on n ensures that the sum extracted from ζ

(N)
L (k) in

the equality below is not empty

max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) = 1√

N

[(1−(n+1)q)N ]∑
i=[pN ]+1

ξi

+ max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−(n+1)q)N ]+1

ξi

)
.

Repeating the proof of Lemma 2.1 we obtain the following analog of the equality (3),

pn =

√
A√

2πσ′2u
e−

u2

2σ′2

∞∫
−∞

e−
Aw2/u2

2σ′2 e
√
Aw
σ′2 P (M(k, L) > w) dw, (18)

where σ′2 is equal to [(1−(n+1)q)N ]−[pN ]
N .

The expression (3) for the probability in Lemma 2.1 differs from (18) only in the variance σ′2 of

9 Copyright c© 2017 by Dmitrii Zholud
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the extracted summand. Recall that σ2 in Lemma 2.1 is equal to [(1−q)N ]−[pN ]
N . It is straightforward

to show that
σ2

σ′2
= 1 +

nq

1− (n+ 1)q − p
+ o(u−2) = 1 + z.

With this notation the right-hand side of (18) takes form

√
Ae−

u2

2σ2
(1+z)

√
2πσ′2u

∞∫
−∞

e−
Aw2/u2

2σ2
(1+z)+

√
Aw
σ2

ze
√
Aw
σ2 P (M(k, L) > w) dw.

The first exponent under the integral sign is a parabola with respect to w and attains its maximum
at the point w = z

z+1
u2√
A

. Straightforward calculation then show that

pn ≤
√
A√

2πσ′2u
e−

u2

2σ2
K

∞∫
−∞

e
√
Aw
σ2 P (M(k, L) > w) dw,

where
K = 1 +

z

1 + z
= 1 +

nq

1− q − p
≥ 1 + nq.

Finally, owing to Lemma 2.1 there exists a constant C such that

pn ≤
σ

σ′
e−

nB
2 HB

A

1√
2πu

e−
u2

2 (1 + o(1)) ≤ Ce−
nB
2 HB

A p0(u),

where o(1)→ 0 uniformly in n when u,N →∞.

Case 2.2: np ≥ 13
16 . Now σ′2 can be arbitrary small and using Lemma 1 of Piterbarg (1991)

we get

pn ≤ P

 max
0<k≤pN

0<L≤ 3
16N

ζ
(N)
L (k) > u

 ≤ 2P( max
0<k≤ 3

16
N+pN

Sk >
1
2u
√
N) ≤ 2e

− u2

4( 3
16+p) ≤ 2e−u

2
.

Thus, combining the estimates for pn obtained in cases 2.1 and 2.2 with (17) and (16) we have

lim
u,N

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≤ HB +

HB
AC

A

∞∑
n=1

e−
nB
2 ,

lim
u,N

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≥ HB.

It was proved in Zholud (2008) that the limit H = lim
B→∞

HB exists and is positive. Letting first

A, and then B tend to infinity, we conclude that the upper and lower limits coincide and equal H.
This finishes the proof of Theorem 1.3.

3 Very large deviations of the Shepp statistic

Here we prove Theorem 1.4. The asymptotic behavior of the probability (1) under assumption that
u/
√
N →∞ is considered. First, we find the asymptotic behavior of the probability

P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
. (19)
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As in the previous section, we then show that the maximum of the field ζ
(N)
L (k) over the complemen-

tary set {(k, L) : 0 < k ≤ TN, 0 < L ≤ N − 1} gives neglible contribution to the probability (1).

Now a key lemma that plays an essential role in establishing the asymptotic formula for (19).

Lemma 3.1. Let (ξ1, ξ2) be a Gaussian random vector such that ξ1 and ξ2 are standard normal
variables with correlation coefficient α < 1. Then,

P (ξ1 > u, ξ2 > u) <
1√
2πu

e−
1
2
u2 1√

2πu
(1 + α)

√
1 + α√
1− α

e−
1
2
u2 1−α

1+α .

Proof: The variable ξ2 can be expressed as the sum of two independent variables αξ1 and ζ, where
ζ ∼ N(0, 1− α2). By ϕζ(·) we will refer to the density function of ζ. Denoting the probability in the
statement of the lemma by I(u) we have

I(u) = P (ξ1 > u,αξ1 + ζ > u) = 1√
2π

∞∫
u
e−

v2

2 P(ζ > u− αv)dv = − 1√
2π

∞∫
u

P(ζ>u−αv)
v de−

v2

2

= −P(ζ>u−αv)√
2πv

e−
v2

2

∣∣∣∣∞
u

+ 1√
2π

∞∫
u
e−

v2

2 dP(ζ>u−αv)
v

= e−
u2

2√
2πu

P (ζ > u(1− α)) +
∞∫
u

e−
v2

2√
2π

(
α
ϕζ(u−αv)

v − P(ζ>u−αv)
v2

)
dv.

Write K(u) for the first summand in the last expression. The second summand is less than

α√
2πu

∞∫
u

e−
v2

2 ϕζ(u− αv)dv

and thus I(u) is bounded by

K(u) + α√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2

(
v2+

(u−αv)2

1−α2

)
dv = K(u) + α e

−u
2

2√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2
(v−αu)2

1−α2 dv

= K(u) + αK(u) = 1√
2πu

e−
1
2
u2(1 + α)P

(
ζ√

1−α2
> u

√
1−α√
1+α

)
.

The lemma now follows from the standard upper bound of the standard normal distribution tail. �

Next, we estimate (19) using the Bonferroni inequality

[TN ]P
(
ζ

(N)
N (1) > u

)
≥ P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
≥ [TN ]P

(
ζ

(N)
N (1) > u

)
−

∑
1≤l,m≤TN

l 6=m

P
(
ζ

(N)
N (l) > u, ζ

(N)
N (m) > u

)
.

By stationarity, and applying Lemma 3.1 with

α = αn = Eζ
(N)
N (1)ζ

(N)
N (n) = max{0, N − (n− 1)

N
},

we get that the double sum is bounded by

2TN
TN∑
n=2

P
(
ζ

(N)
N (1) > u, ζ

(N)
N (n) > u

)
< 2TN

TN∑
n=N+1

P
(
ζ

(N)
N (1) > u

)2

+ 2TN
N∑
n=2

1√
2πu

e−
1
2
u2 1√

2πu
(1 + αn)

√
1+αn√
1−αn

e−
1
2
u2 1−αn

1+αn .
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As before let p0(u) denote 1√
2πu

e−
1
2
u2 , the asymptotic bound for the standard normal distribution

tail. The first summand is then less than

2(TN)2P
(
ζ

(N)
N (1) > u

)2
= 2(TN)2p0(u)2(1 + o(1))

and the second is estimated from above by

2TNp0(u)
2
√

2N√
2πu

N∑
n=2

(
e−

u2/N
4

)n−1

= o(TNp0(u)),

where we took into account that u/
√
N →∞.

Replacing the double sum by its upper estimate and dividing both sides of the Bonferroni inequality
by [TN ]p0(u), and assuming TN ≥ 1, we get that

1 + o(1) ≥ P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)/
[TN ]p0(u) ≥ 1− 4TNp0(u)(1 + o(1)) + o(1).

Finally, for TNp0(u)→ 0 we obtain the following asymptotic formula for the probability (19),

P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
= [TN ]p0(u)(1 + o(1)). (20)

The remaining step is to note that the probability for the maximum over the complementary set is
neglible. Since

P

(
max

0<k≤TN
0<L≤N−1

ζ
(N)
L (k) > u

)
≤ TN

N−1∑
L=1

P
(
ζ

(N)
L (1) > u

)
≤ TN

N−1∑
L=1

p0

(
u
√

N
L

)
= TNp0(u)

N−1∑
L=1

e−
u2(N−L)

2L

≤ TNp0(u)
N−1∑
L=1

(
e−

u2/N
2

)N−L
= o(TNp0(u)),

the latter estimate and (20) conclude the proof of Theorem 1.4.

4 Limit theorems for M
(N)
T

In this section we consider the case when T,N go to infinity. It can be shown that for appropriate

normalization constants aT and bT the limit distribution of
(
M

(N)
T − aT

)/
bT is Gumbel. Theorem

4.1 exhibits the normalizing constants for three different limit relations between T and N .

Theorem 4.1. Assume that one of the following relations hold:

1)
2 lnT

N
→ 0. 2)

2 lnT

N
→ θ2 > 0. 3)

2 lnT

N
→∞.

Then, for any fixed x,

P

(
max

0<k≤TN
0<L≤N

aT (ζ
(N)
L (k)− bT ) ≤ x

)
= e−e

−x
+ o(1),
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where

aT =
√

2 lnT , bT =
√

2 lnT +
F (T,N) + 1

2 (ln lnT − lnπ)
√

2 lnT

and the function F (T,N) is given by

1) F (T,N) = lnH 2) F (T,N) = ln
Jθ
θ

3) F (T,N) = − ln
2 lnT

N
.

The proof follows from Lemma 3.1 of Zholud (2008) closely, and is hence omitted.
The limit distribution for the case 2 lnT

N = θ2, 0 < θ <∞ was obtained by A.M. Kozlov in Kozlov
(2004) and was reformulated in Theorem 4.1 for comparison purpose.
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