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Efficient estimation of the number of false positives in

high-throughput screening
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Abstract

This paper develops tail estimation methods to handle false positives in multiple testing prob-
lems where testing is done at extreme significance levels and with low degrees of freedom, and where
the true null distribution may differ from the theoretical one. We show that the number of false
positives, conditional on the total number of positives, approximately has a binomial distribution,
and find estimators of its parameter. We also develop methods for estimation of the true null
distribution, and techniques to compare it with the theoretical one. Analysis is based on a simple
polynomial model for very small p-values. Asymptotics which motivate the model, properties of the
estimators, and model checking tools are provided. The methods are applied to two large genomic
studies and an fMRI brain scan experiment.

Keywords: Correction of p-values, extreme value statistics, false discovery rate, SmartTail, high-throughput
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1 Introduction

The purpose of high-throughput screening in bioscience is to identify interesting candidate cases for
further study, and it differs from classical testing in several ways. First, it involves many thousands
of hypotheses. Second, to get a manageable number of positives, testing is done at extreme signifi-
cance levels. Third, individual tests are often based on very few observations. Fourth, the true null
distributions in these very complex experiments often deviate from the theoretical ones. This paper
develops methods to handle false positives in high-throughput screening.

We prove that the conditional distribution of the number of false positives given that there are r
positives is asymptotically binomial, observe that the success probability parameter of this binomial
distribution coincides with the Storey (2002) positive false discovery rate, and develop methods to
estimate it. We also introduce new estimators of Efron’s local false discovery rate and other error
control parameters and methods to estimate the true null distribution and to compare it with the
theoretical null distribution. We provide confidence intervals for both independent and dependent
p-values.

Earlier approaches use either fully parametric models or empirical distribution functions. However,
trusting that a model is accurate far out in the tails can lead to a high bias; for the genome screening
data considered below, it gave estimates which were clearly wrong. Furthermore, in high-throughput
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screening the empirical distribution function estimator is typically based on a small number of obser-
vations and has high variance. Our approach is semi-parametric: we use a parametric model, but only
for the tails of the distributions. This makes it possible to obtain both low bias and low variance.

The high-throughput screening experiments considered here lead to the asymptotics n fixed,m→
∞, α → 0, where n is the number of observations used in the individual tests, m is the number of
tests, and α is the significance level. In particular a Bonferroni procedure takes α = η/m, with η
fixed. Then α → 0 as m → ∞. In practice, a small α may instead be mandated by limited capacity
for further study of the positives.

Let P denote a generic p-value and write H0 and H1 for the null and the alternative hypothesis.
Our basic model, the extreme tail mixture model, is that there exist ci, γi, ui > 0 such that under Hi

the p-values have cumulative distribution functions

Fi(x) = cix
1/γi , 0 ≤ x ≤ ui, i = 0, 1. (1)

This model is derived in Section 2. Further we assume that for π0, π1 > 0, π0 + π1 = 1,

F (x) = pr(P ≤ x) = π0c0x
1/γ0 + π1c1x

1/γ1 , 0 ≤ x ≤ u = min(u0, u1). (2)

Mixture models of this type are standard in the multiple testing literature. Still, our methods apply
also if the number of true and false null hypotheses are nonrandom.

Dudoit and van der Laan (2008) and Kerr (2009) are recent useful reviews of the area. Knijnenburg
et al. (2009) suggests using generalized Pareto approximations to improve efficiency of permutation
test in bioinformatics. Presumably the most common approach is the false discovery rate error control
procedure of Benjamini and Hochberg (1995). However, in screening studies the aim is to select inter-
esting cases for further study, and then error control may be less natural. The estimation approach to
multiple testing has already attracted significant interest (Storey, 2002, 2003, Efron et al., 2001, Efron,
2004, 2008, Ruppert et al., 2007, Jin and Cai, 2007), and the true null distribution is often different
from the theoretical one (Efron et al., 2001, Jin and Cai, 2007). Fan et al. (2007) consider uniform
normal approximations of t-distributions when both n → ∞ and m → ∞, but such approximations
are inaccurate for small n.

2 Basic theory

In this section we give conditions that ensure that the model (1) holds asymptotically as u→ 0, and
that the limiting binomial distribution of the number of false positives holds. The proofs are given in
the Supplementary Material.

Let Gt, G0 and G1 be the cumulative distribution functions of the test statistic under the theoret-
ical null hypothesis, the true null hypothesis, and the alternative hypothesis, respectively, and write
x∗t , x

∗
0, x
∗
1 for their right endpoints. Let Ḡ = 1 − G and write Ḡ← for the right continuous inverse of

Ḡ. Then Ḡ0{Ḡ←t (x)} is the true null distribution of p-values, and Ḡ1{Ḡ←t (x)} is the alternative dis-
tribution of p-values. If G0 = Gt and the distributions are continuous, then the true null distribution
Ḡ0{Ḡ←t (x)} is U(0, 1).

Theorem 2.1. Let i = 0 or 1 and suppose that Gt and Gi belong to the max domains of attraction
of extreme value distributions with shape parameters ξt and ξi, respectively. If (i) ξt, ξi > 0 or (ii)
ξt, ξi < 0 and x∗t = x∗i <∞ then, for some constants γi > 0,

Fi(x) = Gi{G←t (x)} = ci(u)x1/γi{1 + o(1)}, (3)

with the o(1) term uniform in ε ≤ x/u ≤ 1 as u→ 0, for any ε > 0.
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It can be shown that (3) holds also for ξt = ξi = 0, under suitable further conditions.
If Gt and G0 satisfy the conditions of Theorem 1, then, by (3), equation (1) applies for i = 0 and

sufficiently small ui. Now, it is typically known that Gt satisfies the conditions, and extremal domain
of attraction theory motivates that they usually also hold for G0. Thus equation (1) for i = 0 should
be valid in most testing problems.

The motivation for (1) for i = 1 is more delicate since it requires that G1 belongs to a max domain
of attraction. From a Bayes or empirical Bayes perspective (Efron, 2008), the arguments are the same
for G1 as for G0. From a frequentist point of view, however, one might believe in a few major effects
plus a larger number of unimportant ones, expressed to a random amount and measured with error.
If the major effects are large compared to the cutoff for tests, then testing is in the center of their
distribution, and the extremal motivation is less compelling. However, then these effects often would
be clearly visible, and careful analysis of false positives less important. Otherwise, testing is still in
the tail of G1, and the extreme value arguments motivate equation (1) also for G1. Below we provide
methods to use the data to distinguish between the cases.

The motivation for (1) given by Theorem 2.1 is mathematical. Empirical motivation is given by
the examples below and from extensive experience from extreme value statistics.

For t- and F -tests assumption (i) of Theorem 2.1 holds with γi = 1 under quite general conditions,
regardless of non-normality or dependence of the data, see Zholud (2014). The convergence in (3) is
fast for low degrees of freedom, but slower for larger ones.

We next show that a conditional binomial distribution of the number of false positives is widely
applicable. Let m0 be the number of true null hypotheses, m1 be the number of false null hypotheses,
and m = m0 + m1 be the total number of tests. Let α = αm be the critical level, Q0 and Q1 be
the distributions of the numbers of true and false positives, respectively, and Pr be the conditional
distribution of the number of false positives given that there is a total of r positives. Write Bin(r, p)
for a binomial distribution with r trials and success probability p, and Po(λ) for a Poisson distribution
with parameter λ. Let ||P−Q|| = supA |P (A)−Q(A)| be the variation distance between the probability
distributions P and Q, and let pFDR be positive false discovery rate of Storey (2003),

pFDR =
π0F0(αm)

π0F0(αm) + π1F1(αm)
. (4)

Theorem 2.2. Suppose there exist constants 0 < c ≤ C < ∞ such that c ≤ miFi(αm) ≤ C, that
||Qi−Po{πiFi(αm)}|| → 0 as m→∞, for i = 0, 1, and that the number of false positives is independent
of the number of true positives. Then, for r fixed,

||Pr −Bin(r, pFDR)|| → 0, m→∞. (5)

In particular (5) holds if the p-values are mutually independent and one of the following conditions is
satisfied: (i) m0,m1 → ∞ are non-random, and c ≤ miFi(αm) ≤ C and πi = mi/m, for i = 0, 1, or
(ii) the model (2) holds, m→∞ and c ≤ mFi(αm) ≤ C.

3 Statistical methods

In this section we derive the maximum likelihood estimator for F0(x) and compute its efficiency relative
to the empirical distribution function. The distribution F (x) may be estimated using maximum
likelihood methods for mixture distributions. Alternatively, an approximation of the extreme tail
mixture model makes it possible to use same estimator as for F0(x). We assume that p-values are
independent, except in a final general theorem.

To estimate F0(x) we assume that it has been possible to obtain a sample of m0 p-values,
p01, . . . , p

0
m0

, from the true null distribution. Then, one chooses a small threshold u0 > 0 and in
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the analysis one only uses the p0i -s which are less than u0, and only estimates F0(x) for x ≤ u0.
The important point is that one only trusts the model F0(x) = c0x

1/γ0 to be sufficiently accurate for
x ≤ u0, but that u0 can often be chosen much larger than α, so that the model-based estimate of
F0(α) uses many more observations and thus has much smaller variance than the empirical distribu-
tion function. The choice of u0 is a compromise between bias and variance, guided by goodness-of-fit
test and plots: a small u0 leads to less model error, and hence less bias, but also to fewer observations
to base estimation on, and hence more variance, see e.g. Coles (2001), Section 4.3.1.

Asume P 0 has the true conditional null distribution, pr
(
P 0/u0 ≤ x | P 0 ≤ u0

)
= (x/u0)

1/γ0 for
0 ≤ x ≤ u0. Then, differentiating the log likelihood function shows that the maximum likelihood
estimate of γ0, based on the p0i -s which are less than u0, is

γ̂0 =
1

N0(u0)

∑
p0i≤u0

− log(p0i /u0), (6)

with N0(u0) = #{p0i ≤ u0, 1 = i, ...,m0}. Since F0(x) = pr
(
P 0 ≤ u0

)
pr
(
P 0 ≤ x | P 0 ≤ u0

)
, and

estimating pr
(
P 0 ≤ u0

)
by N0(u0)/m0 we estimate F0(x) by

F̂0(x) = N0(u0)/m0 (x/u0)
1/γ̂0 , x ≤ u0. (7)

The variance of N0(u0)/m0 is estimated by {N0(u0)/m0}{1 − N0(u0)/m0}/m0. Conditionally on
P0 < u0 the summands in (6) have a mean γ0 exponential distribution and hence, conditionally on
N0(u0), the variance of γ̂0 is estimated by γ̂20/N0(u0). Using that N0(u0)/m0 and γ̂0 are asymptotically
uncorrelated and normally distributed, see the Supplementary Material, confidence intervals can be
computed using the delta method.

By (2), pr(P/u ≤ x | P ≤ u) = px1/γ0 + (1 − p)x1/γ1 for p = π0c0u
1/γ0/(π0c0u

1/γ0 + π1c1u
1/γ1)

and 0 ≤ x ≤ 1. Thus the conditional distribution of {pi/u} is a mixture distribution with parameters
p, γ0, and γ1. These may be estimated using numerical maximum likelihood, and for N(u) = #{pi ≤
u, 1 ≤ i ≤ m}, we may estimate F (x) by

F̂ (x) = N(u)/m
{
p̂ (x/u)1/γ̂0 + (1− p̂) (x/u)1/γ̂1

}
, x ≤ u. (8)

This can be done using three methods: (i) if a sample from the null distribution is available, maximize
the product of the likelihoods for the p0i -s which are smaller than u0 and the pi-s which are smaller
than u, (ii) for the cases when the null hypothesis holds, or when the tail asymptotics of Zholud (2014)
apply, maximize the likelihood for the pi-s which are smaller than u, with γ0 set to 1, or (iii) maximize
the likelihood for the pi-s which are smaller than u. Confidence intervals are obtained using standard
techniques.

The approach (iii) provides an estimate of F0 without a null sample, but since it requires estimating
three parameters, estimation uncertainty will often be large. Additionally, often γ0 ≈ γ1 ≈ 1 so that
(8) is close to non-identifiability, and then none of the methods will work. This was the case for the
yeast genome screening data considered below, where all three methods gave estimates of γ0 and γ1
which were quite close to 1, but where the confidence intervals were too wide to make the methods
practically useful.

Also generally, estimation uncertainty for the maximum likelihood estimates in the mixture model
is often large. However, if γ0 ≈ γ1 then (2) reduces to (9) below, with c = π0c0 +π1c1, and with γ the
common value of γ0 and γ1. Thus a widely useful shortcut method to obtain more accurate estimates
is to approximate (2) by

F (x) = cx1/γ , (9)

and then to estimate F (x) in the same way as for F0(x). Whether (9) is reasonable may be checked
by comparing estimates of γ0 with estimates of γ.
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Storey (2002) proposed the conservative estimator π̂0 = (#{pi > λ}/m)/(1 − λ) of π0, with
λ ∈ (0, 1) a suitably chosen, not small, number. In the present situation where the true null distribution
may be non-uniform one can instead use the estimator

π̂0 =
#{pi > λ}/m

#{p0i > λ}/m0
.

Now let FE(x) be the empirical distribution function estimator of F (x) in (9) and let F̂ (x) be the
estimator provided by (7). It can be shown, see the Supplementary Material, that for large m, small
F (u), x ≤ u, and, say, mF (u) ≥ 35, the efficiency is

e =
var{FE(x)}
var{F̂ (x)}

≈
(u
x

)1/γ [
1 +

1

γ2

{
log
(u
x

)}2
]−1

. (10)

The efficiency for typical values of u/x and γ is shown in Figure 1. Further, if one uses the assumption
γ = 1, the efficiency can be shown to be e = u/x, and is thus higher.

Γ=0.6

Γ=1

Γ=1.4

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
1

1.2

1.4
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1.8

2.
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e

Figure 1. Efficiency of the estimator (7) of F (x) in (9).

The same results hold for F̂0(x). Finally, for very small values of x, which sometimes are of interest,
the empirical distribution function cannot be used as estimator.

Efron (2004, 2008) uses the theoretical null distribution to transform the test statistic to a N(0, 1)
distribution and then accounts for deviations from it by fitting a N(µ, σ) distribution. More complex
procedures are proposed by, e.g., Schwartzman (2008). However, these methods can lead to large bias
and this can be checked by looking carefully into the tails.

The positive false discovery rate is of central interest in this paper. We also use the Efron et al.
(2001) local false discovery rate which measures the a posteriori likelihood of false rejection of a
hypothesis with p-value equal to x, and is defined by

fdr(x) = pr(H0 true | P = x) =
π0c0γ

−1
0 x1/γ0

π0c0γ
−1
0 x1/γ0 + π1c1γ

−1
1 x1/γ1

=
π0dF0(x)/dx

dF (x)/dx
.

Our methods directly give estimators of these parameters and of other false discovery rate parameters:
see Table 1, in which V and R are the number of false positives, and the total number of positives,
respectively.

Table 1. Error control parameters and estimators

Parameter Definition Estimator

false discovery rate E (V/R | R > 0) pr(R > 0) π̂0F̂0(α)

F̂ (α)
{1− e−mF̂ (α)}

positive false discovery rate E (V/R | R > 0) π̂0F̂0(α)

F̂ (α)

local false discovery rate π0dF0(x)/dx
dF (x)/dx

π̂0dF̂0(x)/dx

dF̂ (x)/dx

familywise error pr(V 6= 0) 1− e−mπ̂0F̂0(α)

k-familywise error pr(V ≥ k)
∞∑
i=k

{mπ̂0F̂0(α)}i
i! e−mπ̂0F̂0(α)
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Conservative estimates are obtained by setting π̂0 = 1. The estimators follow from the conditional
binomial distribution of the number of false positives together with the asymptotic Poisson distribution
of the number of false positives. Our estimators of the positive false discovery rate and the false
discovery rate differ from the Storey (2002) estimators by factors 1− exp{−mF̂ (α)}.

The estimators are consistent and asymptotically normal, also when the p-values, {Pi}, form a
stationary dependent sequence. Here and below we omit the subscripts i = 0, 1. Assume (3) holds,
so that F (x) = `(x)x1/γ , where `(x) is slowly varying as x → 0. Split the sequence 1, 2, . . . n up into
km = [m/rm] blocks Bm,i = ((i− 1)rm, irm], 1 ≤ i ≤ km, of length rm. Next, consider levels um → 0
as m → ∞, and, writing 1i for the indicator function of the event that Pi ≤ um, define FE(um) =
m−1

∑m
i=1 1i, γ̂(um) =

∑m
i=1{− log (Pi/um) 1i}/

∑m
i=1 1i and γm = 1

`(um)u
1/γ
m

∫ um
0 `(x)x1/γ−1dx. Let

Zm,i =
∑
j∈Bi

{− log(Pj/um) + C}F (um)−11j , C = −γm {1 + γm/ log(x/um)}

and
Z

(1)
m,i =

∑
j∈Bi

− log(Pj/um)F (um)−11j , Z
(2)
m,i =

∑
j∈Bi

F (um)−11j .

Set σ2m = kmvar(Zm,1), σ
2
m,i = kmvar(Z

(i)
m,1), i = 1, 2, introduce sample block sums

Ẑi = Ẑm,i = D̂
∑
j∈Bi

{− log(Pj/um) + Ĉ}FE(um)−11j ,

with D̂ = −m−1 log (x/um) (x/um)1/γ̂ FE(um)γ̂−2, Ĉ = −γ̂{1 + γ̂/ log (x/um)}, and set

s2m =

km∑
i=1

(Ẑi − Z̄)2, Z̄ = k−1m

km∑
i=1

Ẑi.

Let {Bi,j} be the σ-algebra generated by Pi, . . . , Pj , define the strong mixing coefficients αm,` =
sup{|pr(AB) − pr(A)pr(B)| : A ∈ B1,k, B ∈ Bk+`,m, 1 ≤ k ≤ m − `}, and introduce the following
conditions:

C1: There exist integers `m < rm →∞ with rm = o(m) such that, for km = [m/rm],

km(αm,`m + `m/m)→ 0 and k−1m mF (um)→ 0.

C2: There exist integers wm > 1 such that

rm{F (um)σm}−1wm{mF (um)σ−1m e−wm + 1} → 0 and σm{mF (um)}−1 → 0.

Under these conditions the estimator (7), i.e. F̂ (x) = FE(um) (x/um)1/γ̂(um), of F (x), x ≤ um,
asymptotically has a normal distribution.

Theorem 3.1. (i) Suppose C1 and C2 hold, and that there exist constants 0 < k < K such that
k ≤ σm,i/σm ≤ K for i = 1, 2. Then for any fixed y ∈ (0, 1), as m→∞,

1

D(y, um)σm

{
F̂ (yum)− F (um)y1/γm

}
→d N(0, 1),

for D(y, um) = −m−1 log (y) y1/γF (um)γ−2, and

m

σm,1
(γ̂ − γm)→d N(0, 1),

m

σm,2
{FE(um)− F (um)} →d N(0, 1).
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In particular γ̂ →pr γ and FE(um)/F (um)→pr 1.

(ii) If, in addition, kmvar(Z2
m,1)→ 0, then

1

sm

{
F̂ (yum)− F (um)y1/γm

}
→d N(0, 1).

The proof, explanation of the conditions, extensions to more complex dependence structures, discussion
of sandwich estimators for construction of confidence intervals, and extensions of Theorem 2.2 to
dependent cases are given in the Supplementary Material.

4 Examples

Warringer et al. (2003) performed genome-wide screening experiments for detecting differential growth
in Saccharomyces Cerevisiae, baker’s yeast. In the experiments different yeast strains were grown on
two 100-well honeycomb agar plates. We consider a growth parameter, logarithmic doubling time,
extracted from the resulting 200 growth curves.

In the experiments, 96 mutant yeast strains were grown in the same positions in each of the two
plates. Reference wild type strains were grown in four wells in each plate, one in each quadrant.
For each of the mutant strains, differential growth was measured by subtracting the average of the
logarithmic doubling times of the four reference strains from the logarithmic doubling time of the
mutant strain. This gives one value per mutant for each plate. High differential growth for the
mutant was then tested by comparing the two measured values with zero in a one-sample t-test with
1 degree of freedom.

We considered three data sets from PROPHECY collection of deletion strains in yeast: the wild
type data with 1,728 observed p-values, the genome-wide data with 4,896 observed p-values, where
the mutants and reference wild type strains were grown under normal conditions, and the salt stress
data with 5,280 observed p-values, where the strains were grown under salt stress. The wild type data
were obtained for quality control purposes, and were analyzed in the same way as the genome-wide
data, and hence were a sample from the true null distribution. As discussed above, asymptotically
one expects that γ0 = γ1 = 1, but non-asymptotically other values might give a better fit.

Figure 2 shows that the true null distribution is non-uniform, and that the model (1) fits quite
well. A Kolmogorov-Smirnov test, after a log transformation to get exponentially distributed variables
(Schafer et al., 1972), gave the p-value 0.31 and hence did not reject (1), and the p-value for likelihood
ratio test of γ0 = 1 was 0.8. Plots which guided threshold choice are given in the Supplementary
Material.

For the genome-wide data, the maximum likelihood estimates of γ0 and γ1 obtained from (8),
with u0 = 0.05 and u = 0.01, were both close to 1 for all methods (i) - (iii) described in Section 3.
The estimates of p varied much more. Method (ii), where γ0 is set to 1, gave the shortest confidence
intervals, but they still were too wide for the estimates to be useful: the estimates were p̂ = 0.0 and
γ̂1 = 1.05, with confidence intervals (0, 1) and (0.73, 1.36), respectively.

The model (9) estimate was γ̂ = 1.05, and comparing it with γ̂0 = 0.98 obtained from the wild type
data, this also indicates that (9) is appropriate. Additionally, Figure 3, with Kolmogorov-Smirnov
p-value 0.21, shows that (9) fits the genome-wide data well.

Using (9) the estimate of the positive false discovery rate at α = 0.001, with 95% confidence
interval, was 0.25 ± 0.14. Since there were 44 p-values less than 0.001, the expected number of false
positives was hence estimated to be 11. Using the binomial approximation, the number of false
positives was estimated to be at most 15, with probability greater than 95%. If one instead uses a
uniform null distribution, the number of false positives is estimated to be at most 7 with probability
greater than 95%, a much too positive picture of experimental precision.
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Figure 2. Goodness of fit plots for the wild type data
Left: Empirical distribution function. Dashed line is uniform distribution. Middle: Empirical distribution

function for p ≤ 0.05 (226 values). Solid line is (1) estimated using u = 0.05; Dotted lines are 95% point-

wise confidence intervals. Right: Empirical conditional distribution function of − log(p/0.05) for p ≤ 0.05,

transformed to uniform scale, and Kolmogorov-Smirnov 95% goodness of fit limits.
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Figure 3. Goodness of fit plots for the genome-wide data
Left: Empirical distribution function for p ≤ 0.01 (441 values); dashed line is uniform distribution. Solid line

is (9) estimated using u = 0.01. Middle: Estimated false discovery rate (smooth curve) and empirical false

discovery rate (jagged curve) for u = 0.01, π0 = 1. Straight line is the local false discovery rate with γ0, γ1 set

to 1. Right: Solid line is the positive false discovery rate at α = 0.001 as function of u, for π0 = 1. Dot-dashed

line is with γ0, γ1 set to 1. Dotted lines are 95% pointwise confidence intervals.

The local false discovery plot in Figure 3 indicates that it is slightly more probable that it is the
rejections with the smallest p-values which are the true positives. Still, it is quite likely that some of
the smallest p-values are false positives. The salt stress data was analyzed in the same way as the
genome-wide data and also showed good model fit.

For the wild type data, the genome-wide data, and the salt stress data var{FE(0.001)}/var{F̂ (0.001)}
was estimated to be 2.3, 1.4, and 1.5, respectively, with u = 0.01 also for the salt stress data. Variance
estimates for the positive false discovery rate based on the empirical distribution functions do not
seem to be available. The estimates above are biased upwards as we have set π0 = 1. This bias ought
to be small.

These data sets dramatically illustrate the danger of letting parametric models for centers of data
determine tails: in the spirit of Efron (2004, 2008) we transformed the p-values in the wild type data
to z-values using the inverse of the standard normal distribution function, fitted a N(µ, σ) distribution
to these z-values, and then used the fitted distribution to estimate F0(0.001) to be 0.0116. Instead
the empirical estimate of F0(0.001) was 0.0017 and our estimate was 0.0025. Thus, this normality
based parametric estimate seemed severely wrong. Continuing, the empirical estimate of F (0.001)
for the genome-wide data was 0.0090, and hence the normality based estimate led to the estimate
π0 × 0116/0.0090 ≈ 1.3 > 1 for the positive false discovery rate!
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