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Abstract

This thesis presents results in Extreme Value Theory with appli-
cations to High-Throughput Screening and Bioinformatics. The
methods described here, however, are applicable to statistical anal-
ysis of huge datasets in general. The main results are covered in
four papers.

The first paper develops novel methods to handle false rejec-
tions in High-Throughput Screening experiments where testing is
done at extreme significance levels, with low degrees of freedom,
and when the true null distribution may differ from the theoretical
one. We introduce efficient and accurate estimators of False Discov-
ery Rate and related quantities, and provide methods of estimation
of the true null distribution resulting from data preprocessing, as
well as techniques to compare it with the theoretical null distribu-
tion. Extreme Value Statistics provides a natural analysis tool: a
simple polynomial model for the tail of the distribution of p-values.
We exhibit the properties of the estimators of the parameters of
the model, and point to model checking tools, both for indepen-
dent and dependent data. The methods are tried out on two large
scale genomic studies and on an fMRI brain scan experiment.

The second paper gives a strict mathematical basis for the
above methods. We present asymptotic formulas for the distribu-
tion tails of probably the most commonly used statistical tests un-
der non-normality, dependence, and non-homogeneity, and derive
bounds on the absolute and relative errors of the approximations.

In papers three and four we study high-level excursions of the
Shepp statistic for the Wiener process and for a Gaussian random
walk. The application areas include finance and insurance, and se-
quence alignment scoring and database searches in Bioinformatics.

Keywords: Extreme Value Statistics, High Throughput Screening, HTS,

Bioinformatics, analysis of huge datasets, quality control, correction of

theoretical p-values, comparison of pre-processing methods, SmartTail,

estimation of False Discovery Rates, test power, distribution tail, high

level excursions, quantile estimation, multiple testing, Student t−test,

Welch statistic, small sample sizes, F−test, Wiener process, Gaussian

random walk, Shepp statistic, limit theorems, exotic options.
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Extreme Value Analysis of Huge Datasets

Background

In this section we give a brief introduction to Extreme Value The-
ory and High-Throughput Screening. The purpose is to prepare
the reader for the innovative step introduced later in this thesis -
a new methodology which connects the two areas.

1 Extreme Value Theory

Extreme Value Theory (EVT) is a branch of probability theory
and mathematical statistics which focuses on analysis and infer-
ence about extreme events, i.e. events with very low probability
of occurrence. Extreme events are of great importance in almost
every field of science and technology due to the fact that they can
turn out to be catastrophic1 and thus very costly. This motivation
often comes from finance and insurance - two of the most popular
application areas of EVT. We now proceed with the mathematical
background.

Let {Xi}ni=1 be a sequence of independent, identically distri-
buted (i.i.d.) random variables. Further, let F be their cumulative
distribution function (CDF) and consider the behavior of

Mn = max{X1, .., Xn}, as n→∞.

It then follows from elementary probability theory that

P (Mn > x) = 1− (F (x))n . (1.1)

A naive way to estimate the tail distribution of Mn would be to
take a sample of n observations from the distribution function F
and then estimate F (x) using the empirical CDF estimator

F̂ (x) =
#{Xi ≤ x}

n

and substitute the result in (1.1). This however does not work in
practice because small deviations from F (x) induce huge inaccu-
racy in the estimate of 1 − (F (x))n when n is large. Moreover,

1In this thesis extreme events will be associated with new scientific findings
rather than catastrophes. These are of course important too.
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Tail Estimation Methods in High-Throughput Screening and Bioinformatics

the estimator F̂ (x) is typically not reliable for large x, and it be-
comes clear that the estimation of P (Mn > x) requires a different
approach.

Theorem 1.1 (Fischer and Tippett (1928), Gnedenko (1943)). 2

If there exist normalizing constants cn > 0 and dn ∈ R and a
non-degenerate distribution function H such that

Mn − dn
cn

d→H,

then H is a scaled and translated version of one of the following
three distribution functions:

Fréchet : Φα(x) =

{
0, x ≤ 0
exp (−x−α) , x > 0

α > 0.

Weibull : Ψα(x) =

{
exp (−(−x)α) , x ≤ 0
1, x > 0

α > 0.

Gumbel : Λ(x) = exp
(
−e−x

)
, x ∈ R.

It is said that a distribution F belongs to the Fréchet, Weibull,
or Gumbel domain of attraction if Theorem 1.1 holds with the
Fréchet, Weibull or Gumbel limit distribution accordingly. Note
that we now have knowledge about the distribution of the normal-
ized maximum without knowing the true distribution.

From statistical point of view it is often convenient to param-
eterize the distribution H of Theorem 1.1 in the following way

H(x) = exp

(
−
[
1 + γ

(
x− µ
σ

)]−1/γ
)

(1.2)

defined on {x : 1+γ(x−µ)/σ > 0}, where µ, γ ∈ R and σ > 0. The
Fréchet and Weibull distributions correspond to the cases γ > 0
and γ < 0 respectively, and the Gumbel distribution is the limit
case γ → 0, which implies

H(x) = exp
(
−e−

x−µ
σ

)
, x ∈ R.

2The origins of EVT date back to the work of Fischer and Tippett (1928)
on possible limits of maximum values, later formalized by Gnedenko (1943),
and the book Statistics of Extremes by Gumbel (1958).
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The distribution H(x) in (1.2) is called the Generalized Extreme
Value (GEV) distribution.

The Fréchet domain of attraction coincides with the class of
heavy-tailed distributions; the examples are the Burr, Pareto, and
Student t- distributions. Weibull domain of attraction includes
light-tailed distributions with the finite right endpoint, such as
the Beta and Uniform distributions. And the Gumbel domain of
attraction contains a great variety of distributions ranging from
moderately heavy-tailed to light-tailed, for instance the Exponen-
tial, Log-Normal and Normal distributions.

Finding the normalizing constants and determining the domain
of attraction is not always easy.3 In practice, however, the param-
eters of the GEV distribution (1.2) have to be estimated from data
anyway, and the issue of testing for the belongingness to the do-
main of attraction is not a problem.4

Though EVT has evolved from the problem of finding the distribu-
tion of the normalized maximum, in applications it is also common
to use the so called Peaks Over Threshold (POT) approach. The
latter is based on the fact that for a random variable X with the
distribution function F the exceedance over a threshold u is ap-
proximately Generalized Pareto (GP) distributed with parameters
γ̃ and σ̃(u), that is

Fu(x) = P (X > u+ x|X > u) ≈
(

1 +
γ̃x

σ̃(u)

)−1/γ̃

, (1.3)

defined on {x : x > 0 and 1+ γ̃x/σ̃(u) > 0}. For γ̃ = 0 we interpret
the distribution as the limit as γ̃ → 0, i.e.

Fu(x) ≈ exp (−x/σ̃(u)) , x > 0.

The following theorem states the relationship between the maxi-
mum and the POT approach.

Theorem 1.2 (Pickands (1975), Balkema and de Haan (1974)).
For every γ ∈ R, F is in the corresponding domain of attraction
of a Generalized Extreme Value distribution if and only if

lim
u↑xF

sup
0<x<xF−u

|Fu(x)−Gγ̃,σ̃(u)(x)| = 0

3See e.g. Leadbetter et al. (1983) for different approaches.
4See e.g. Coles (2001) and Beirlant et al. (2004).
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Tail Estimation Methods in High-Throughput Screening and Bioinformatics

for some positive σ and µ ∈ R, where Gγ̃,σ̃(u) is the Generalized
Pareto distribution with parameters γ̃ = γ and σ̃(u) = σ+γ(u−µ),
and xF is the upper right endpoint (possibly infinite).

Using the POT approach we can zoom in to the tails of a dis-
tribution. Indeed, suppose that we can model exceedances of X
above a threshold u using the GP distribution. Then, for x > u,

P (X > x|X > u) =

(
1 + γ̃

x− u
σ̃(u)

)−1/γ̃

+

,

and

P (X > x) = P (X > u)

(
1 + γ̃

x− u
σ̃(u)

)−1/γ̃

+

. (1.4)

For use in statistical analysis one wants u to be large enough so
that the GP model (1.3) holds, but not too large so that one has
reasonable number of observations when estimating the parameters
of the model.5 As there is no commonly agreed selection rule,
the choice of u is governed by exploratory data analysis, see e.g.
examples in Paper I of this thesis.

Once the threshold u is fixed we get an estimator for the prob-
ability P (X > x) as follows: 1) estimate the parameters γ̃ and σ̃
from (1.3) using maximum likelihood, and 2) substitute the latter
in (1.4) and replace P (X > u) by F̂ (u). Confidence intervals can
then be obtained using the delta method.

To summarize, EVT provides a methodology for estimating the
probability of events which occur very seldom or that have never oc-
curred but may occur in the future. For a more in-depth reading we
recommend Coles (2001)6, Beirlant et al. (2004)7, Leadbetter et al.
(1983)8 and Reiss and Thomas (2001)9; for a non-mathematical in-
troduction to statistics of extremes see e.g. Brodin (2006).

5Such trade off between bias and variance is common in EVT and takes place
also when fitting the GEV distribution using the block maximum approach, see
e.g. Coles (2001).

6Contains the most important theoretical results without becoming tedious,
and provides plenty of interesting and useful applications to real datasets.

7Also covers multivariate and Bayesian modeling of extremes.
8Focuses on EVT for stationary time series.
9Includes a variety of interesting case studies with applications to insurance,

finance, hydrology and other fields.
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2 High-Throughput Screening

High-throughput screening (HTS) is a method of experimentation
which aims at accelerating scientific findings, such as e.g. iden-
tification of drug targets or genes involved in the cell cycle, by
conducting thousands - or hundreds of thousands of chemical or
genetic tests performed in an automated manner. HTS is a rela-
tively recent innovation: by the beginning of the 21st century HTS
has gained significant popularity and interest among scientists and
industrial engineers10, and the technology has been, and continues
developing at present11, at a tremendous pace.

HTS has been successfully applied to many areas in modern
biology and has become one of the primary tools for drug develop-
ment in most pharmaceutical companies. Below follow two exam-
ples of HTS studies in cell biology.

Example 1 (quantitative phenotypic profiling in yeast): To under-
stand the genetic machinery of the model organism Saccharomyces
cerevisiae12, baker’s yeast, the community of yeast researchers have
constructed a collection of single gene deletion mutated haploid
strains for all known protein coding genes, see Giaever et al. (2002).
Some of these strains (roughly 20%) are not viable, and the chal-
lenge is to utilize the rest of the strains (approximately 5000) in a
way that provides new knowledge of how genes function.

In Warringer and Blomberg (2003) and Warringer et al. (2003)
the focus is on growth characteristics of different yeast strains.
Omitting details, if a growth parameter of a mutant strain colony
differs substantially from the corresponding growth parameter of
a wild type cell, then this can be interpreted as evidence that the
gene plays an important role in some intra-cellular regulation pro-
cess, i.e. the gene is active, given the conditions of the experiment
- growth media, temperature and etc. Of particular interest are
comparisons of the growth behavior under different environmental

10See e.g. Bolger (1999) and Hertzberg and Pope (2000).
11For the most recent trends in HTS see e.g. Macarron et al. (2011), Mayr

and Bojanic (2009) and Mishra et al. (2008).
12There is a number of advantages of a yeast cell as a model organism: it

can be propagated in great numbers relatively fast, it is easy to study in a
laboratory, and, being eukaryotic, it is biologically more relevant to human
than bacteria.
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stress conditions with the behavior under normal, unstressed con-
dition(s). For example, a deletion strain can behave as the wild
type strain in normal media, but have a severe growth defect in
salt stressed environment. This can then be interpreted as a hint
that the knocked out gene (or the corresponding protein) plays a
key role in cellular defense or adaption processes under salt stress.

In these studies the authors recorded and analyzed the growth
of colonies of the mutant strains in 5 different growth media. This
gave approximately 25, 000 growth curves, and each growth curve
was replicated twice, see e.g. Zholud et al. (2011) and Papers
I and II of this thesis. The growth curves can be found in the
PROPHECY database.

Example 2 (large-scale mapping of genetic interactions in yeast):
Within the study of the yeast genome, let us consider the concept
of synthetic lethality, which defines a relationship where two muta-
tions, neither of which is lethal on its own, result in cell death when
they are combined. Identification of synthetically lethal double
mutant combinations is of basic interest because they can identify
genes which are involved in the same essential biological process.

A HTS study of impressive scope is being conducted in the
Boone Lab13, where the synthetic lethality approach is used to
provide a global view of functional relationships between genes
and pathways, see Costanzo et al. (2010) and Baryshnikova et al.
(2010). Over the period of 5 years the group has examined 5.4
million gene-gene pairs, which is approximately 30% of the total of
6000× 6000/2 = 18, 000, 000 possible double mutants. The screen-
ing is expected to be completed by 2013.

Such huge-scale studies would not be feasible without modern ad-
vances in robotics and high-speed computer technology. Along
with the ability to conduct hundreds of thousands of experiments
in a short amount of time, HTS poses fundamental challenges re-
lated to experimental planning and data analysis. We discuss these
challenges in the next section.

13The Donnelly Centre for Cellular and Biomolecular Research, University
of Toronto.
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3 The bridge between EVT and HTS

In this section we explain why Extreme Value Theory should be
used in the analysis of High-Throughput Screening experiments.
Our arguments are valid for huge datasets of any origin (and not
necessarily related to HTS) as long as testing at extreme signifi-
cance levels takes place.

The structure of the section is as follows. First, we give a gen-
eral motivation and show that the analysis of HTS data requires
EVT-based methods by the very definition. Then, we give two
more specific notes, which, in our opinion, address fundamental
challenges of HTS. Each note contains a few simple examples of
how EVT can meet the challenges.

Basic motivation. Extreme values of statistical tests are of ba-
sic interest in HTS experiments for the following reasons. First,
HTS uses many thousands or even millions of biochemical, genetic
or pharmacological tests. In order to get a reasonable number of
rejections, the significance level of the tests is often very small,
say, 0.001 or lower. Second, HTS assays are often subject to nu-
merous systematic and spatial effects and to large number of pre-
processing steps. The resulting data may hence become dependent,
non-normal, or non-homogeneous, which leads to deviations from
the standard assumptions underlying the use of the tests. And
third, under economical constraints, the number of replicates in
each individual experiment that constitute a HTS study is usually
as small as 2−5, making large sample approximations, such as e.g.
normal approximation, inapplicable.

This encourages the study of the asymptotic behavior of the
tails of the distribution of the test statistics. Tail probabilities and
accurate approximations of those can be used 1) to correct theo-
retical p-values when the true model is in fact different from the
stated one 2) to compare different pre-processing methods 3) to
study the power of statistical tests, and 4) to estimate false discov-
ery rates and related quantities.

Thought there are other, more specific examples of the use of EVT-
based methods in HTS, see e.g. Knijnenburg et al. (2009), we are
not aware of any literature that describes or uses methodology or
methods similar to those presented in this thesis.
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Let us now consider in more detail some aspects of data quality
and estimation of false discovery rates.

A note on data quality. It is a common knowledge that data
quality is the primary ingredient of a successful experiment, whether
it is a huge-scaled HTS study or a single test. However, even
though there is a widespread opinion that advances in modern
technology and methods of quality control lead to significant im-
provements in the accuracy of measurements involved in HTS stud-
ies, see e.g. Macarron et al. (2011), still the quality control in HTS
contains many stumbling blocks.

First, it should be noted that no laboratory would be willing
to publish the details on the quality of their data, if the quality
of the data is poor. The author of this thesis has his own experi-
ence working with HTS data. This experience does not necessarily
come from the projects mentioned here, but also from discussions
with colleagues and collaborators, from attending scientific con-
ferences, and from reading numerous articles on the subject. As
long as this knowledge can be trusted without having to expose the
work of others, whether such criticism would have been considered
fair or not, I believe that it has become quite common practice
in the literature to hide the true facts about the quality of data
behind fuzzy technical details and ad-hoc implementations of data
pre-processing methods. This tendency presumably comes from
fear of acquiring a reputation of a “laboratory that does bad ex-
periments”, and is reinforced by the scale of HTS studies and the
amount of time, money, and labor involved.

The second stumbling block is the lack of appropriate statistical
methods that provide a proper analysis methods. We do not mean
to say that existing methods fail to address the issues they are de-
signed to cope with, e.g. various spatial effects, contaminations,
outliers, systematic effects and etc., but rather that they address
these issues only partially. However, the rest, that can not be fully
explained or fixed, is often neglected or not mentioned. For exam-
ple, such methods as removing row, column, and plate biases, see
e.g. Malo et al. (2010), despite their power to reduce the impact of
systematic effects, have one serious disadvantage - they introduce
a bias when they are applied to data that does not contain any
systematic effects. The assessment of the presence of systematic
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errors in a given HTS assay is a complex problem, see e.g. Dragiev
et al. (2011). In biological articles, however, one rarely finds data
analysis which is satisfactory from a statistical point of view.

The ultimate goal of HTS technology is of course to provide
an elegant solution on the “hardware” level, that is, by means of
efficient experimental design, accurate measurement systems and
automated quality control. In practice, however, this is quite com-
plicated (e.g. bacteria colonies may compete for food, or grow
better on the edges rather than in the middle of the plates, and
etc.), and good methods to distinguish between true positives and
false positives, to choose the best pre-processing method, and to
find out how the deviations from the null model affect the findings
are very much needed. In Papers I and II we use Extreme Value
Theory to develop such methods.

As a brief example we now show how to use EVT to com-
pare different pre-processing methods and to correct theoretical
p−values, even without any knowledge about the experimental de-
sign, i.e. the source of the deviations from the null model.

Let P be a generic p−value obtained using the Student one- or
two-sample t−, or F− test. Then, for small x, and under the as-
sumption that there exists a continuous joint density of the vector
of data14, it follows from the results of Paper II that

P (P < x) = Cx
(
1 + o(1)

)
, (3.1)

as x → 0, where 0 < C < ∞ is some constant. If the theoretical
null hypothesis holds, then the p−values are uniformly distributed
and C = 1. If, however, the true null hypothesis deviates from the
theoretical one, then C 6= 1, and the preprocessing methods can be
compared by looking at the corresponding values of the constant
C. The latter can be estimated from a dataset for which the null
hypothesis is known to be true15, see Paper I for the examples of
how it is done.

14Minor technical constraints apply.
15The null dataset can be obtained by conducting a separate experiment,

or artificially, by e.g. alternating signs or using permutations. It may be
well worth the effort to try to obtain a sample from the true null distribution
anyway, both to get a better grip on risks for false positives and for general
quality control purposes.
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A straightforward correction of the p−values is as follows. As-
sume that one is only interested in the values of x which are small
enough to make it possible to neglect the o(1) term in (3.1). Then
use the resulting model to estimate the constant C from a null
dataset and multiply all p−values computed from the experimental
dataset by the factor C. We, of course, assume that the experi-
mental conditions and pre-processing methods are the same for the
null and the experimental datasets.

Finally, in Paper I we present a more general EVT-based model for
p-values that result from statistical tests other than the Student
one- or two- sample t− or F− tests, and which may sometimes
lead to better approximations than (3.1) for the t− and F− tests.
It should be emphasized that it has to be checked from the data
whether the model of Paper I is relevant in a concrete testing prob-
lem. The same applies, of course, to the asymptotic formula (3.1).
We provide the methods for such model checking and give explicit
examples of EVT-based analysis of HTS datasets in Paper I.

A note on the FDR controlling procedures. One of the
primary concerns in HTS studies is to be able to control16 or es-
timate17 the proportion of false discoveries among the set of all
positive findings. The false discovery rate (FDR) approach to mul-
tiple testing was introduced by Benjamini and Hochberg (1995),
where the authors suggested studying the error rate vaguely de-
scribed as “the proportion of false discoveries”. In the notation of
their paper, FDR is defined as the expectation of random variable
Q = V/R, the ratio of the number of erroneously rejected null
hypotheses, V, to the total number of the rejected hypotheses, R.
If R = 0, then Benjamini and Hochberg define Q to be equal 0.
Thus,

FDR = E (Q) = P (R > 0) E (V/R|R > 0) . (3.2)

16This refers to the False Discovery Rate (FDR) controlling procedure of
Benjamini and Hochberg (1995), see below.

17This refers to the positive False Discovery Rate (pFDR) approach of Storey
(2002). We believe that the latter is a more appropriate measure of the pro-
portion of false discoveries than FDR.
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Based on this definition Benjamini and Hochberg (1995) proposed
the following multiple-testing procedure: for any given value q∗ > 0
and m independent test statistics with the corresponding ordered
p-values P(1), P(2), .., P(m), reject all H(i), i = 1, 2, .., k̂, where k̂ is

the largest i for which P(i) ≤ i
mq
∗. This procedure ensures that

FDR ≤ q∗, that is, FDR is “controlled” at level q∗.

The critical problem with the FDR approach of Benjamini and
Hochberg is that FDR, in fact, has little to do with the “expected
proportion of false discoveries” when q∗ is small. Small value of
FDR does not necessarily mean that E (V/R|R > 0) is small, but
could instead just be caused by small value of P (R > 0), i.e. by
the probability that there are any rejections at all being small, see
(3.2). It follows from the Extreme Value Theory results given in
Paper II (details are given later in this section) that this is not
just a theoretical possibility, but a very important practical issue.
In short, the result is that for, perhaps, the most commonly used
statistical tests18, and under the assumption that the tests are in-
dependent,

E (V/R|R > 0)→ C as α→ 0.

Here α is the significant level, and C > 0 is some positive con-
stant.19 Thus, under quite general conditions, FDR→ 0 as q∗ → 0
because P (R > 0)→ 0, and not because the expected proportion
of false discoveries E (V/R|R > 0)→ 0.20

Similar criticism of the FDR approach of Benjamini and Hoch-
berg can be found in Storey (2002). The author argues that

“...when controlling FDR at level q∗, and positive find-
ings have occurred, then FDR has really only been con-
trolled at level q∗/P (R > 0).”

and introduces the quantity

pFDR = E (V/R|R > 0) , (3.3)

18For the Student one- and two- sample t−, and F− statistics, see Theorem
1.1 of Paper II.

19C = 0 in the degenerate case when there are no null hypothesis, i.e. V ≡ 0.
20The author of this thesis wonders how this approach could gain such pop-

ularity in scientific community. The arguments follow later in this section, and
a separate paper that addresses the usefulness of FDR controlling procedure of
Benjamini and Hochberg is in progress.
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called positive False Discovery Rate (pFDR), to quantify the pro-
portion of false positives, conditioned on the event that positive
findings have occurred. For a more thorough motivation of pFDR
over FDR and details on the methods of estimation of pFDR see
e.g. Storey (2002, 2003, 2004). The pFDR approach of Storey
gives a more realistic picture of the expected proportion of false
discoveries, with the fundamental difference that while the sequen-
tial p-value method of Benjamini and Hochberg fixes the “error
rate” parameter FDR and estimates the corresponding rejection
region, the Storey approach is to fix the rejection region and then
estimate its corresponding error rate (without quotes!), pFDR.

Neither FDR nor pFDR, however, take advantage of Extreme
Value Theory and thus do not use information from the tails of
the distribution of the test statistic(s), or, alternatively, p−values.
We now give a brief example of how EVT can contribute to the
estimation of pFDR and construction of confidence intervals in sit-
uations where traditional methods fail.

Consider a multiple testing problem, where there are in total m
independent tests such that the null hypothesis, H0, is true with
probability π0 and the alternative hypothesis, H1, is true with
probability π1 = 1− π0. Let g0(x) and g1(x) be the joint densities
of the data vector under H0 and H1 accordingly. The distribution
of an arbitrary p-value then follows the semi-parametric mixture
model

F (x) = π0F0(x) + π1F1(x),

where F0(x) and F1(x) are the CDFs of the p-values under H0 and
H1 accordingly. Further, Theorem 1.1 of Paper II implies that if
the p−values are obtained using the Student one- or two- sample
t−, or F− statistic, and g0 and g1 are continuous21, then

F (x) = Cx
(
1 + o(1)

)
as x→ 0,

where C = (π0Kg0 + π1Kg1) and Kg0 and Kg1 are some positive,
finite constants that depend on the densities g0 and g1.22 The
positive False Discovery Rate parameter pFDR, by equation (5)

21Minor technical constraints apply.
22The constants Kg0 and Kg1 depend on the test statistic as well.
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of Theorem 1 in Storey (2002) and the above equality23, is

pFDR(x) =
π0Kg0

C
+ o(x). (3.4)

It follows, perhaps in contradiction to what could be expected, that
pFDR does not become smaller as one goes further out in the tail.
Equation (3.4) shows that for the Student one- and two- sample t−
and F− tests, and under quite general assumptions on the data,
pFDR can not be “controlled”, no matter what the value of π0 is!

We propose the following EVT-based estimator of pFDR: es-
timate the unknown parameter π0 using the estimator π̂0 of Storey
(2002), and Kg0 and C using methods of EVT24 - these methods
and related exploratory and model checking analysis are studied
in detail in Paper I. We can then use the delta method to obtain
confidence intervals on pFDR(x) in (3.4), see Zholud (2011b).

As a final comment, Storey (2002) estimates pFDR using the
empirical CDF as estimator of F (x). The EVT-based methods,
however, lead to substantial gains in accuracy and efficiency, as
indicated by the examples in Paper I. Further, we are not aware of
any other methods that make it possible to estimate pFDR(x) for
x-es which are smaller than the smallest observed p−value. This
can sometimes be of interest, e.g. as input to the planning of the
next experiment.

Paper I develops methods to estimate pFDR under more general
model for the observed p-values, i.e. not necessarily for the tests
mentioned above. This model is motivated by general asymptotic
arguments from EVT, and also by extensive practical experience
from Extreme Value Statistics.

Conclusion. In this thesis we make an attempt to start a new
trend for the use of EVT-based methods in the analysis of huge
datasets. A brief summary of our contribution is given in the next
chapter.

23The equation (5) of Storey (2002) is based on the assumption that the
p−values are uniformly distributed under H0. In this case, of course, Kg0 = 1.
We though consider a more general case when the true null distribution may
differ from the theoretical one - this happens quite often in HTS experiments.

24Here Kg0 and C are estimated from the null and experimental datasets
accordingly.
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Summary of the papers

In this chapter we give a short summary of the papers included
in the thesis. Papers I and II develop new methodology for sta-
tistical analysis of huge datasets; in particular, datasets that arise
in High-Throughput Screening experiments are in focus. Papers
III and IV take their origin from the problem of sequence align-
ment and database searches in Bioinformatics, but the results may
find suitable application in other areas as well. The last section
contains a note on the author’s contribution to the papers.

1 Tail estimation methods in High-Through-
put Testing

In Paper I, Tail estimation methods for the number of false posi-
tives in high-throughput testing, we develop novel methods to han-
dle false rejections in HTS experiments. The innovative step em-
phasized in the paper is to use Extreme Value Theory to study the
tails of the distribution of p-values associated with these highly-
multiple testing setups.

Let P denote a generic p-value, and, as usual, write H0 for the
null hypothesis and H1 for the alternative hypothesis. Our basic
model is that there are positive constants c0, γ0, c1, γ1 such that

F0(x) = Pr(P ≤ x | H0) = c0x
1/γ0(1 + o(1))

and

F1(x) = Pr(P ≤ x | H1) = c1x
1/γ1(1 + o(1)),

as x → 0. This model is motivated by general asymptotic argu-
ments from EVT, and also by extensive practical experience from
Extreme Value Statistics. We give both theoretical and data-based
motivation, and also introduce and illustrate a number of model
checking tools.

If the testing procedure is reasonable, then small p-values should
be more likely under H1 than under H0, so it is typically reason-
able to expect that γ0 ≤ γ1.1

1However, for the Student one- and two- sample t− and F− tests the model
is expected to hold with γ0 = γ1 = 1, see Paper II.
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If one further assumes that tests are independent, and that
H0 is true with probability π0, and H1 is true with probability
π1 = 1 − π0, then we get the following extreme tail mixture form
for the distribution

F (x) = Pr(P ≤ x) =
(
π0c0x

1/γ0 + π1c1x
1/γ1

)
(1 + o(1)) (1.1)

of the observed p-values.
We show that the conditional distribution of the number of

false positives, given that there is in all r positives, approximately
has a binomial distribution, and use extreme tail model to develop
efficient and accurate methods to estimate its success probability
parameter. Furthermore, we provide efficient and accurate meth-
ods to estimate the true null distribution resulting from a prepro-
cessing method, and techniques to compare it with the theoretical
null distribution.

The methods are tried out on two large scale genomic studies
and on an fMRI brain scan experiment. A software implementation
of the methods, SmartTail, is available at www.smarttail.se.

2 Tail approximations for some common sta-
tistical tests

In Paper II, Tail approximations for the Student t−, F−, and
Welch statistics for non-normal and not necessarily i.i.d. random
variables, we study the tails of the distribution of these, perhaps,
most commonly used test statistics under non-standard conditions.
If the null hypothesis

H0 : X ∼MVN(0, σ2In)

holds, where X ∈ Rn, n ≥ 2, is the vector of data, σ2 > 0, and In
is the identity matrix, then the distribution of the Student one- or
two- sample t− or F− statistic, denoted further by Tn = Tn(X),
is of course well known. The challenge is to find the asymptotic
behavior of the probability of high-level excursion of Tn under the
alternative hypothesis; and preferably for small sample sizes, i.e.
to study

P (Tn > u|H1) , as u→∞ for n fixed.
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The motivation for such problem statement comes from HTS ex-
periments, where testing is done at extreme significance levels, and
often with very low degrees of freedom.

The multivariate joint density g of the vector X under H1 does
not have to be Gaussian, and may allow dependence and non-
homogeneity of the elements of the sample. We show that if the
density g is continuous2, then

P (Tn > u|H1) = Kgt(u)(1 + o(1)) as u→∞, (2.1)

where 0 < Kg <∞ is some constant that depends on g, and t(u) is
the tail of the distribution of Tn under H0. We give exact algebraic
expressions for Kg, compute the theoretical value of the constant
for a number of particular cases3, and present MATLAB (2010)
scripts to evaluate Kg numerically for an arbitrary g.

We also derive bounds for the absolute and relative errors of
the asymptotic approximations, and study the rate of convergence,
both theoretically and using simulations.

The paper provides explicit conditions on the multivariate den-
sity g which ensure that the asymptotic formulas are valid, as well
as simpler conditions that can be easily checked in many situations.

Finally, we study high-level excursions of the Welch statistic,
and suggest an alternative to the Welch-Satterthwaite approxima-
tion for the case when sample sizes are small, and when testing is
done at extreme significance levels.

The results of Paper II give a basis for new methods to correct
theoretical p−values, to compare different pre-processing methods,
and to estimate False Discovery Rates and related quantities in
HTS experiments. These methods have been developed in Paper
I, under the more general model (1.1) for the tails of the distri-
bution of the p−values. For the Student one- and two- sample t−
and F− tests, however, the model (1.1) is expected to hold with
γ0 = γ1 = 1, which reduces the number of parameters and there-
fore the variability of the corresponding estimators.

Another important consequence is that for these test statistics
the positive False Discovery Rate of Storey (2002), pFDR(x), is
asymptotically constant as x→ 0.

2Minor regularity constraints apply.
3Including multivariate Gaussian and non-normal i.i.d. cases.
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3 How big is the maximal increment of a
Gaussian random walk?

The motivation for Paper III, Extremes of the Shepp statistic for a
Gaussian random walk, comes from the problem of finding similar-
ities between long biological sequences. In order to detect similar-
ities that indicate real biological kinship it is important to study
similarities between random Bernoulli sequences.

A well understood application of Extreme Value Theory to
sequence alignment is gapless alignment as implemented, e.g., in
BLAST, see Altschul et al. (1990).4 In this case it has been rigor-
ously proven, see Karlin and Dembo (1992), that the distribution
of the maximal score of the alignment of two random sequences
belongs to the Gumbel domain of attraction, and explicit formulas
for the parameters have been given.

In this paper we study mathematically closely related matching
problem5 and derive a theoretical result on the limiting distribu-
tion of the maximal increment of a Gaussian random walk.

Let (ξi, i ≥ 1) be a sequence of independent standard normal ran-

dom variables and let Sk =
k∑
i=1

ξi be the corresponding random

walk. We study the re-normalized Shepp statistic

M
(N)
T =

1√
N

max
1≤k≤TN

max
1≤L≤N

(Sk+L−1 − Sk−1)

and determine asymptotic expressions for

P
(
M

(N)
T > u

)
when u,N and T →∞

in a synchronized way. There are three types of relations between
u and N that give different asymptotic behavior. For these three

cases we establish the limiting Gumbel distribution of M
(N)
T when

T,N →∞ and present the corresponding normalization sequences.

4Gapless alignments are most commonly used in database searches.
5That is as if the distribution of the substitution weights was standard

normal.
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4 How big is the maximal increment of the
Wiener process?

In Paper IV, Extremes of the Shepp statistic for the Wiener process,
we study the tail of the distribution of

MT = max
0≤t≤T

max
0≤s≤1

W (t+ s)−W (t),

where W (·) is the standard Wiener process. By analogy with the
discrete case studied in Paper III, MT is referred to as the Shepp
statistic for the Wiener process.

We determine an asymptotic expression for the probability of
high-level excursion of MT ,

P (MT > u) when u→∞, (4.1)

establish the limiting Gumbel distribution of MT as T → ∞, and
present the corresponding normalization functions.

The results of Paper IV are essential for the proof of Theorem
1.2 of Paper III. We note, however, that though the motivation to
study (4.1) had purely scientific origin, the solution may be useful
in practice: a quick example comes from finance and insurance,
where the tail distribution of the maximal increment MT of, say, a
stock price may be used to model prices of some exotic options.

5 The author’s contribution

Paper I is a joint work with Professor Holger Rootzén. The authors
have contributed equally to the paper.

In Paper II, special credit goes to Professor Holger Rootzén for
careful reading and useful comments, and Professor Olle Nerman
for pointing out that the proof does not use the assumptions of
independence and identical distribution, as stated in a very early
version of the manuscript.

The problem statement in Papers III and IV comes from Pro-
fessor V.I. Piterbarg.
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S. Dow, A. Lucau-Danila, K. Anderson, B. André, A.P.
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Tail estimation methods for the number of

false positives in high-throughput testing

Holger Rootzén and Dmitrii Zholud ∗

Abstract

This paper develops methods to handle false rejections in
high-throughput screening experiments. The setting is very
highly multiple testing problems where testing is done at
extreme significance levels and with low degrees of freedom,
and where the true null distribution may differ from the
theoretical one. We show that the conditional distribution
of the number of false positives, given that there is in all
r positives, approximately has a binomial distribution, and
develop efficient and accurate methods to estimate its success
probability parameter. Furthermore we provide efficient and
accurate methods for estimation of the true null distribution
resulting from a preprocessing method, and techniques to
compare it with the theoretical null distribution. Extreme
Value Statistics provides the natural analysis tools, a simple
polynomial model for the tail of the distribution of p-values.
We provide asymptotics which motivate this model, exhibit
properties of estimators of the parameters of the model, and
point to model checking tools, both for independent data and
for dependent data. The methods are tried out on two large
scale genomic studies and on an fMRI brain scan experiment.
A software implementation, SmartTail, may be downloaded
from the web.
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1 Introduction

Setting: High-throughput measurements and screenings in modern
bioscience differ from classical statistical testing in several ways.
First, it involves testing thousands - or hundreds of thousands - of
hypotheses. Second, to get a manageable amount of rejected null
hypotheses, testing is typically done at extreme significance levels,
e.g. with α = 0.001 or smaller. Third, each of the individual tests
are often based on very few observations, so that the degrees of
freedom for t− or F−tests may be as low as 1 or 2, and degrees
of freedom less than 10 are common. Fourth, in such large and
complicated experiments the real null distribution of test statistics
and p-values frequently deviates from the theoretical one.

In Section 5 we consider three such high-throughput investi-
gations: testing of gene interaction in yeast using a Bioscreen C
Analyzer robot Warringer et al. (2003), Zholud et al. (2011); a
Genome Wide association scan Arabidopsis microarray experiment
Zhao et al. (2007); and a fMRI brain imaging experiment, see
Dehaene-Lambertz et al. (2006) and Taylor and Worsley (2006).
The number of tests for the different data sets in these investiga-
tions varied between 1,700 and 35,000 and the typical significance
levels were 0.001 or less. The degrees of freedom was 1, the lowest
possible, in the Bioscreen experiment. It seemed clear that for all
three investigations the real null distribution differed from the the-
oretical one. Property four, that the real null distribution often is
different from the hypothetical one has been widely observed and
discussed in the literature. For a few examples see Efron et al.
(2001), Efron (2004, 2008), Jin and Cai (2007), Zhao et al. (2007),
and Schwartzman (2008). Cope et al. (2004) developed a standard-
ized set of graphical tools to evaluate high-throughput testing data.

False positives: The aim of this paper is to develop methods to
understand and handle false rejections in high-throughput screen-
ing experiments. Thus we study very highly multiple testing prob-
lems where testing is performed at extreme significance levels and
with low degrees of freedom, and where the true null distribution
may differ from the theoretical one. Our illustrations come from
biology, but the same problems appear in many other areas, too.
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Our point of view is the following: the tests use a very small
α and hence false rejections are determined by the extreme tails
of the distributions of test statistics and p-values, and the central
parts of the distributions are largely irrelevant. For this reason
we throughout use the powerful methods for tail estimation which
have been developed in Extreme Value Statistics.

Our main results are answers to the questions “how many of the
positive test results are false?” and “how should one judge if one
preprocessing method makes the true null distribution closer to the
theoretical one than another method?” for such testing problems.

Our answer to the first question is i) the conditional distribu-
tion of the number of false positives given that there are in all
r positives is approximately binomial, and ii) efficient and accu-
rate methods to estimate the success probability parameter of this
binomial distribution.

As answer to the second question we provide efficient and accu-
rate methods for estimation of the true null distribution resulting
from a preprocessing method, and techniques to compare it with
the theoretical null distribution.

Perhaps the words efficient and accurate above should be em-
phasized. Existing approaches use either fully parametric models
for the distributions of test quantities or p-values, or else use the
empirical distribution function as estimator. Our approach instead
is semi-parametric: we use a parametric model, but only for the
tails of the distributions. The meaning of “efficient” then is that
the random variation in our estimates is substantially smaller than
for the empirical distribution function. With “accurate” we mean
that we do not make the very strong assumptions that models like
normal or beta distributions can be trusted far out in the tails
of the distribution. Instead we only model the tail, and let data
determine the part of the tail for which the model fits well. For
the details of this, see Sections 2 below, and for some concrete
numerical results see Section 5.

A third contribution of this paper is that it provides an accurate
estimator of Efron’s local false discovery rate fdr(x), see later in
this section. Note that the empirical distribution does not provide
any estimate of fdr(x) at all, and hence one can not talk about our
estimator’s “efficiency” relative to the empirical estimator (this is
why here we write “accurate”, not “efficient and accurate”).
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There is an enormous and rapidly expanding literature on mul-
tiple testing. The monograph of Dudoit and van der Laan (2008)
is one entrance point into this literature. Kerr (2009) gives a recent
useful review of the area. Noble (2009) is directed at practition-
ers. Below we discuss some specific parts of the recent literature
on multiple testing more in detail. The recent paper Knijnenburg
et al. (2009) suggests using Generalized Pareto approximations to
improve efficiency of permutation test, in particular in bioinfor-
matics. We are not aware of any other papers which connect EVS
and high-throughput testing.

Estimation, not error control: The aim of this paper is estima-
tion of the distribution of the number of false positives and of re-
lated quantities, and not “error control”. The False Discovery Rate
(FDR) error control procedure, Benjamini and Hochberg (1995),
has had an enormous influence on the field of multiple testing,
and has seen extensive further development. However, in screen-
ing studies the aim is not final confirmation of an effect. It instead
is to select a number of interesting cases for further study. In
such situations, error control may be less natural. The estimation
approach to multiple testing of course already has attracted sig-
nificant interest in the literature. E.g., this is the point of view in
Storey (2002, 2003, 2004), Efron et al. (2001), Efron (2004, 2008),
Ruppert et al. (2007), and Jin and Cai (2007).

By way of further comment, in high-throughput testing and for
many standard tests, such as t− or F−tests, the error control pro-
vided by the Benjamini-Hochberg method is different from what
one naively could be led to expect. The reason is that for such tests
the ratio {probability of false rejection}/{probability of rejection}
converges to a constant as the significance level tends to zero (see
e.g. Zholud (2011a)). Then, if the desired FDR is less than this
constant, the Benjamini-Hochberg method simply makes it highly
probable that there are no rejections at all. Since FDR is defined
to be zero if there are no rejections this in turn makes the achieved
FDR small. However, this may be more a formality than anything
else. For high-throughput screening it seems to be more useful
to have good estimates of the probability of false rejection and of
the distribution of the number of false rejections, rather than FDR
control. These issues are discussed in further in e.g. Storey (2002,
2003), Kerr (2009), and Zholud (2011a).
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Tail model: Our methods can equivalently be presented in terms
of test statistics or in terms of p-values. We have found the latter
formulation convenient and use it throughout.

Let P denote a generic p-value, and, as usual, write H0 for the
null hypothesis and H1 for the alternative hypothesis. Our basic
model is that there are positive constants c0, γ0, c1, γ1 such that

F0(x) = Pr(P ≤ x | H0) = c0x
1/γ0(1 + o(1)) (1.1)

and
F1(x) = Pr(P ≤ x | H1) = c1x

1/γ1(1 + o(1)), (1.2)

as x → 0. This model is motivated by general asymptotic argu-
ments from extreme value theory, and also by extensive practical
experience from extreme value statistics. The theoretical moti-
vation and references are given in Section 4. Section 5 gives a
data-based motivation using three studies from biology, and also
introduces and illustrates a number of model checking tools, cf.
Figure 2 in Section 5.

If one further assumes that tests are independent, that H0 is
true with probability π0, and H1 is true with probability π1 =
1−π0, then we get the following extreme tail mixture form for the
distribution

F (x) = Pr(P ≤ x) =
(
π0c0x

1/γ0 + π1c1x
1/γ1

)
(1 + o(1)), (1.3)

for the observed p-values. If the testing procedure is reasonable,
then small p-values should be more likely under H1 than under H0,
so it is typically reasonable to expect that γ0 ≤ γ1.

Mixture models are of course very widely used in many ar-
eas, and in particular in multiple testing in bioinformatics. For a
long list of references to this, see Kerr (2009); in particular Alli-
son et al. (2002) discusses such models under the heading Mixture
Model Methods, or MMM-s. We find these models natural and
useful. However the results of this paper continue to hold also for
models where the numbers of true and false null hypotheses are
considered as fixed numbers, see below.

Asymptotics and the tail model: The situation described above
is in an “asymptotics formulation” described as

n fixed,m→∞, α→ 0, (1.4)
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where n is the number of observations used in the individual tests,
m is the number of tests, and α is the significance level.

The first two assumptions, n fixed, m→∞, delineate the class
of high-throughput testing situations which are studied in this pa-
per. As for the third one, α → 0, suppose one chooses to reject
the null hypotheses for all tests that give a p-value less than some
critical value α. For example, in a Bonferroni procedure one would
choose α = η/m (cf. Gordon et al. (2007)), with η “a fixed num-
ber”. In theory the choice of η, and hence of α, would be guided by
the fact that π0η is the expected number of false rejections (pro-
vided the null distribution one uses is, in fact, the true one). In
practice, the choice of α is often based on beliefs of how often the
null hypothesis is violated, and on available capacity for further
study of rejected hypotheses. Since the number of p-values, m, is
assumed to be very large, α in the end typically in the situations
we consider is chosen quite small, also because one wants to get a
manageable number of rejections. Hence, the assumption α→ 0.

There of course exists very large literature on central limit
type approximations for the case n → ∞. E.g., sharp results
for uniformity in approximate t−distributions when n → ∞ and
m → ∞ simultaneously and a literature review is given by Fan
et al. (2007). However, this is not the case of interest here, and
it is of course well known that for low values of n approxima-
tions of t or F−distributions can be quite inaccurate. In another
set of literature it is instead proven that if the underlying obser-
vations deviate from normality or independence then, under very
general conditions, tails of one- and two-sample t-statistic and of
F−statistic are not the same as if the observations really were nor-
mal, see Hotelling (1961), Zholud (2011a), and references in the
latter paper. However the latter paper also shows that the de-
viation is of a simple kind: under the asymptotics (1.4) the tail
probabilities under non-normality are proportional to the tails of
the relevant t or F−distributions, see Zholud (2011a). It in par-
ticular follows that (1.1) - (1.3) are satisfied, since these equations
are known to hold for t− and F−distributions.

The Extreme Tail Mixture Model: It is reasonable to neglect the
o(1)-terms in (1.1) - (1.3) if x is not too far from α, and α is small.
This leads to the following Extreme Tail Mixture Model:
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F0(x) = Pr(P ≤ x | H0) = c0x
1/γ0 , (1.5)

F1(x) = Pr(P ≤ x | H1) = c1x
1/γ1 , (1.6)

and
F (x) = Pr(P ≤ x) = π0c0x

1/γ0 + π1c1x
1/γ1 . (1.7)

If this model holds, tests are made at the “fixed” level α, and
assuming independence between tests, then (see Section 3 below)
the conditional distribution of the number of false rejections, given
that there has been r > 0 rejections in total, has approximately
a binomial distribution with “number of trials” parameter r and
success probability parameter

pFDR =
π0c0α

1/γ0

π0c0α1/γ0 + π1c1α1/γ1
=
π0F0(α)

F (α)
. (1.8)

Here we use the notation pFDR for this parameter because it coin-
cides with the pFDR of Storey (2002), see Section 3. (The leftover
case r = 0 is not interesting - if there are no rejections, then one
knows for sure that there are no false rejections either!)

These results apply also for the more ad hoc method, which is
presumably often used in practice, where one chooses to reject the
null hypothesis for the r tests which gave the smallest p-values,
with “r a fixed number”. Again, the choice of r is typically influ-
enced by beliefs about the frequency of null hypothesis violations,
and on available capacity for study of rejected hypotheses.
Further, the local false discovery rate (Efron et al. (2001)), which
measures the “a posteriori likelihood of false rejection” of a hy-
pothesis with p-value x ≤ α is then

fdr(x) = Pr(H0 true | P = x) =
π0c0γ

−1
0 x1/γ0

π0c0γ
−1
0 x1/γ0 + π1c1γ

−1
1 x1/γ1

=
π0

d
dxF0(x)
d
dxF (x)

. (1.9)

The empirical distribution function does not provide any estimate
of fdr. An alternative nonparametric possibility could be to use
some kernel type estimator. However such estimators are well
known to provide erratic tail estimators.
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The simplest situation is when the theoretical null distribution
is in fact the true null distribution, so that F0 is the uniform distri-
bution and c0 = γ0 = 1. However our focus (cf. discussion above)
is situations where this does not hold, but we instead have an ad-
ditional sample where the null hypothesis is known to be true. It is
typically quite worth the effort to acquire such a sample. It could
be achieved by performing an extra experiment, as in the Bioscreen
example in Section 5, or, in the brain imaging example, by finding
regions where it seems likely there are no effects, or by randomly
changing signs in contrasts, or in other ways, see e.g. in Efron et al.
(2001) and Taylor and Worsley (2006).

In this paper we show how Extreme Value Statistics can be used
to get efficient and accurate estimates of the distributions (1.5) and
(1.7), and of their derivatives, for the small x which are the val-
ues of interest in the present situation. EVS in addition provides
confidence intervals and goodness-of-fit tests and focusses analysis
and graphics on what is at the heart of the problem. The remain-
ing parameter π0 in (1.8) and (1.9) has to be estimated through
other means, e.g. by a variant of the method in Storey (2002) –
this is the only point where the entire range of p-values comes into
play. Alternatively, π0 can be conservatively estimated by setting
it equal to 1. The loss of accuracy in the conservative approach is
small in the situations we consider, and is quantified by (1.8) and
(1.9). The estimates of F0(x), F (x), and π0 directly lead to esti-
mates of the success probability parameter pFDR in the binomial
distribution, and of fdr(x).

Dependence: Complexity and preprocessing in high-throughput
testing can introduce dependence between tests. The effects of
time series dependence on extremes has been extensively studied
in the extreme value literature, and many of the issues are well un-
derstood. In particular, extremes may be asymptotically indepen-
dent even if typical observations are dependent. For one instance
of this, in a paper inspired by high-throughput testing in biology,
see Clarke and Hall (2009). However, also for the opposite case
when extremes are “asymptotically dependent”, there exist good
methods to deal with time dependence. Further, even if less is
rigorously proven for the more complicated “spatial” dependence
which often is of interest, e.g. in gene expression experiments, it is
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typically relatively clear how the known time series results extend
to such situations. In the following sections we provide some more
details on this.

Overview: In Section 2 we develop the estimation methods, and
discuss how dependence influences estimation. Section 3 derives
the conditional binomial distribution for the number of false pos-
itives. It also provides estimates of error control parameters such
as the Benjamini-Hochberg False Detection Rate and the Family-
Wise ERror. Section 4 gives the motivation for the models (1.1)
and (1.2). In Section 5 we use our methods to analyze the two
data sets from genomics, and the brain imaging data set discussed
above. Section 6 contains a concluding discussion.

A statistical software tool, SmartTail, for performing the ana-
lyzes described in this paper may be downloaded from the web, see
www.smarttail.se, and details on technical implementation of the
methods can be found in Zholud (2011c,b).

2 Statistical methods

In this section we first discuss how to estimate F0(x), and how
to test and produce confidence intervals. This discussion is for
the case of independent p-values. A natural simplification of the
mixture model (1.3) then makes it possible to use the same methods
to estimate F (x). For t− and F−tests with low degrees of freedom,
it may sometimes be reasonable to replace γ0 and γ1 by 1, and, if
the theoretical null distribution is the true one, then c0 = γ0 = 1.

We further discuss how the method of Storey (2002) to esti-
mate π0 translates to the present setting. Together this provides
all the ingredients needed for estimation of (1.8) and (1.9). Finally,
if there is dependence between observations the estimators still are
consistent and asymptotically normal, but if there is clustering of
extremely small p-values, then the standard deviations of the esti-
mators may be inflated.

Estimation of F0(x): To estimate F0 we assume that it has been
possible to obtain a (perhaps approximate) sample of m0 p-values,
p0

1, . . . , p
0
m0

, from the true null distribution, cf. the discussion in the
introduction. Our EVS procedure for estimation of the parameters
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of (1.1) is then as follows:

The first step is to choose a threshold u > 0 which is small
enough to make it possible to neglect the o(1) term in (1.1) for
x ≤ u and hence to use the Extreme Tail Model (1.5). This u then
plays the central role that the statistical analysis only uses those
of the observations (i.e. the p0

i -s) which are less than u, and that
the analysis only tries to estimate values of F0(x) for x ≤ u.

This choice of the threshold u is a compromise between bias
and variance (or, in the terminology of the introduction, between
accuracy and efficiency) and is similar to the choice of bandwidth in
kernel density estimation: a small u leads to less “model error”, and
hence less bias, but also to fewer observations to base estimation
on, and hence more variance. In practice, the choice of u is guided
by goodness-of-fit test and plots; see Coles (2001), Beirlant et al.
(2004), and the analysis of the examples in Section 5.

For the next step, write P 0 for a random variable which has
the (true) null distribution of the p-values. From (1.5) it follows
that

Pr
(
− log(P 0/u) ≥ x | P 0 ≤ u

)
=
c0(ue−x)1/γ0

c0u1/γ0
= e−x/γ0 , (2.1)

for x positive. Thus, the variable − log(P 0/u) conditionally on
P 0 ≤ u has an exponential distribution with mean γ0. Let N =
#{1 ≤ i ≤ m0; p0

i ≤ u} be the number of the p0
1, . . . , p

0
m0

that
are less than u. Since the sample mean of the observations is the
natural estimator of the mean of an exponential distribution, the
natural estimator of γ0 is

γ̂0 :=
1

N

∑
1≤i≤m0; p0i≤u

− log(p0
i /u). (2.2)

This is just the ubiquitous Hill estimator in a somewhat different
guise, cf. Beirlant et al. (2004), Section 4.2. Further, for 0 ≤ x ≤ u,
we have that F0(x) = Pr

(
P 0 ≤ x

)
= Pr

(
P 0 ≤ u

)
Pr
(
P 0 ≤ x |

P 0 ≤ u
)

= Pr
(
P 0 ≤ u

)
c0x

1/γ0/(c0u
1/γ0). Since N/m0 is the non-

parametric estimator of Pr
(
P 0 ≤ u

)
we get the semiparametric

estimator

F̂0(x) =
N

m0

(x
u

)1/γ̂0
(2.3)
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of F0(x), for 0 ≤ x ≤ u. An estimate of d
dxF0(x) is obtained by

differentiating (2.3).

The important point here is the following. We only trust the
model F0(x) = c0x

1/γ0 to be sufficiently accurate for “small” values
of x, i.e for x ≤ u, where u is “small”. However, still this threshold
u often can be chosen much larger than the critical value x = α
used to decide if a test rejects or not, and hence the estimate F̂0(α)
is based on many more observations - and accordingly is much
more efficient - than the standard empirical distribution function
estimator of F0(α). Quantitative examples of this are given below,
and for any specific data set the efficiency gain can be obtained
from the SmartTail software.

If the observations p0
1, . . . , p

0
m0

are independent, then the vari-

ance of N/m0 is estimated by N
m0

(
1− N

m0

)
/m0. Since the stan-

dard deviation of an exponential distribution is equal to the mean
we have that conditionally on N the variance of γ̂0 is γ2

0/N . Hence
the variance of γ̂0 may be estimated by γ̂2

0/N . Further the param-
eter estimators N/m0 and γ̂0 are asymptotically uncorrelated and
asymptotically normally distributed. Thus, asymptotic confidence
intervals, e.g. for F̂0(α), can be computed using the delta method,
see Zholud (2011b).

Estimation of F (x): The straightforward way to estimate param-
eters in the mixture density (1.3) would be to write down the
joint conditional likelihoods of the sample from the null distribu-
tion and of the observed p-values p1, . . . , pm that are less than the
threshold u and then maximize numerically to find the parameters
c0, c1, γ0, γ1, π0. However, if γ0 = γ1 =: γ then the model collapses
to

F (x) = cx1/γ , (2.4)

with c = π0c0 + π1c1, and the parameters become unidentifiable.
This would presumably also make it difficult to estimate param-
eters if γ0 and γ1 are similar, even if they are not exactly equal.
This identifiability problem is further compounded by the fact that
in typical situations where the test works as desired, the first term
in (1.7) would be substantially smaller than the second one – if not
there would be too many false rejections.

However, turning this around, one can often expect that (2.4)
in fact would model the observed p-values quite well. We hence
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propose the following procedure: First estimate γ in the model
(2.4) from the observed p-values p1, . . . , pm in precisely the same
way as γ0 was estimated from p0

1, . . . , p
0
m0

. If this estimate is rea-
sonably close to the estimate of γ0 - just use the model (2.4) for
the distribution of p-values in the experiment and estimate F (x)
in the same way as F0(x). Confidence intervals for F (x) are also
obtained in the same way as for F0(x).

If the estimated γ0 and γ are substantially different, then one
might try to complement with the maximum likelihood approach
outlined above, perhaps with π0 estimated “externally” by just
guessing, or by the Storey (2002) method which we discuss below.
The final decision on whether to use (1.7) or (2.4) can then be
based on the extent to which the fitted distributions differ, and on
the relative sizes of the two terms in (1.3).

As a further comment, the preceding results of course are valid
not only for the mixture model, but also if one assumes fixed num-
bers of true and false null hypotheses.

As mentioned above, there are important cases when some
of the parameters are known from theory. In particular, if the
p-values have been produced by one- or two-sample t−tests or
F−tests, then γ0 = γ1 = 1, see Zholud (2011a), and in partic-
ular (2.4) is satisfied. If the theoretical null distribution is in fact
equal to the true one, then γ0 = c0 = 1. In such cases one may
of course use these known values instead of the estimates – but it
still may be a good idea to check if they agree with the estimates.

Estimation of π0: Storey (2002) proposed the following conser-
vative estimator π̂0 = (#{pi > λ}/m)/(1 − λ) for the proportion
of cases where the null hypothesis is true. Here λ ∈ (0, 1) is a suit-
ably chosen (not “small”) number. The idea behind the estimator
is that “most” of the large p-values come from the null distribution,
so that the numerator is an estimate of π0Pr(P 0 > λ), while the
denominator is an estimate of Pr(P 0 > λ), provided the p-values
in fact are uniformly distributed under the null hypothesis. In the
present situation where this last assumption may not be true one
can instead use the estimator

π̂0 =
#{pi > λ}/m

#{p0
i > λ}/m0

.

The choice of λ is discussed in Storey’s paper.
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Efficiency and accuracy : As one quantification of the gain in effi-
ciency from using the Extreme Tail Model instead of the empirical
distribution function, assume that the model (2.4) holds exactly
for x ≤ u, and let F̂E(x) be the empirical distribution function
estimator of F (x). Straightforward but lengthy calculations show
that then, for x ≤ u and F (x) ≤ 0.01,

Var(F̂ (x))

Var(F̂E(x))
≤
(x
u

)1/γ
(

1 +
1.02

γ2

(
log
(x
u

))2
)
,

and that this bound is quite precise. For details see Zholud (2011b).
In practical use often x/u would be of the order of 0.1 - 0.01 and
the value of γ would be around 1. The resulting efficiency gain is
illustrated in Figure 1 for three values of γ.
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Figure 1: Efficiency gain from using the Extreme Tail
Model as compared to the standard empirical CDF.

The same results of course apply to F̂0(x). The examples in Sec-
tion 5 contain some further numerical examples of the increased
efficiency which can be obtained by using the Extreme Tail Model.
As a final comment, for very small values of x, which sometimes
can be of interest, the empirical distribution function is just not
possible to use as an estimator.

As for accuracy, e.g. the papers Efron (2004, 2008, 2010) first
uses the theoretical null distribution to transform test statistics to
a N(0, 1) distribution and then accounts for deviations from this
theoretical null distribution by fitting a N(µ, σ) distribution to
these values, and finally uses the result as a tail approximation.

Future work chapter md5 hash:
7B0B4906E175DBA0F2C4901E199E418D 43 Copyright c© 2011 by Dmitrii Zholud

www.zholud.com

http://www.zholud.com


Rootzén H. and Zholud D.

Schwartzman (2008) instead assumes an exponential family of dis-
tributions. These papers emphasize the risks for wrong inferences
which can result from the theoretical null distribution being differ-
ent from the theoretical one, but do not seem to account for the risk
that the assumed distribution does not fit in the tails. In Allison
et al. (2002) tail approximations are instead obtained by fitting a
beta distribution to observed p-values. Tang et al. (2007) increases
the sophistication of this approach by adding a Dirichlet prior. In
these approaches, data from the center of the distributions deter-
mine the fit, and thus the statistical variability of the resulting
estimators is small. Instead the fitted models are assumed to hold
in the extreme tails. However, for the case considered here where
each test is based on very few observations, such an assumption
is not backed by theory, and in many similar situations has been
observed to lead to bad modeling of tails (also in cases where the
parametric model fitted very well in the center of the data). Thus
there is substantial risk that these methods could lead to bad accu-
racy and, in our opinion, if they nevertheless are used they should
at least be checked through comparison with methods such a those
in this paper. In particular, it is wise to employ appropriate graph-
ical tools which concentrate on tail fit, rather than on overall fit of
distributions.

Dependence: The estimators discussed above are consistent and
asymptotically normal also for dependent observations, in quite
general circumstances. For the standard Hill estimator and for the
“time series case” Rootzén et al. (1991) and Hsing (1991) give the
precise conditions for this, using strong mixing as the dependence
condition. Via (2.1) and (2.2) this directly provides corresponding
results for the present situation.

Dependence can potentially inflate the variances of the esti-
mators. However this only happens if there is clustering of small
p-values, i.e. if the small p-values appear in clusters located closely
together. Thus, if there is no any clustering one can just ignore
dependence and proceed as if the p-values were independent. How
to check for clustering is discussed in the next section.

If extreme values in fact do cluster, it is nevertheless still possi-
ble, see Rootzén et al. (1991), to estimate the asymptotic variance
by “blocking”. In this method the p0

i -s are first grouped in equal
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sized blocks of neighboring observations, and then estimates of γ
in the blocks are used to estimate the variance, in the following
way: Let ` be the lengths of the blocks, and for simplicity assume
that n = `×k for k integer (if this is not satisfied, one may discard
the last few observations). The standard deviation of γ̂0 is then
estimated by the standard deviation of the k γ-estimates computed
in the blocks, divided by

√
k. The standard deviation of γ̂ is esti-

mated in the same way.
The choice of ` is again a compromise between bias and vari-

ance: too small an ` might cut to many clusters into two and lead
to an underestimated standard deviation, while too large an ` gives
too few block averages to use for estimation, and hence very vari-
able estimates of the standard deviation. In practice one typically
would compute the estimates for a range of values of ` and use this
together with visual information about clustering to make the final
choice of `. This method of course is closely related to the block
bootstrap methods used in time series analysis.

In addition to γ0 the estimator (2.3) of F̂0(x) also contains the
factor N/m0 where N = #{1 ≤ i ≤ m0; p0

i ≤ u}. The discussion
above of the influence of dependence on γ0 carries directly over
to the variance of N and the covariance between γ0 and N , see
Rootzén et al. (1991).

In biological applications it is common that there is no natural
linear ordering of the observations. However, it may still be possi-
ble to group the observations into equal-sized blocks such that there
may be considerable dependence inside the blocks, while block av-
erages are substantially independent. If this is possible, the method
described above can still be used to estimate the standard devia-
tions of γ̂0 and γ̂.

3 Basic theory

The basic binomial conditional distribution for the number of false
positives in the introduction follows from completely elementary
reasoning. However, for completeness we still give a derivation of
it for three cases: the basic model (1.3) where H0 is true with
probability π0 and H1 is true with probability π1; the case when
m0 = #{false null hypotheses} is thought of as non-random; and
a case when the critical level α is a random variable, e.g. when it
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is equal to the k-th largest p-value for “k non-random”.

Although this is not the main thrust of this paper we also briefly
illustrate how the estimates from the previous section may be used
to give efficient and accurate estimates of some other standard error
control parameters.

Approximate binomial distribution of the number of false positives:
With notation from above we have that

m0 = # true null hypotheses

m1 = # false null hypotheses

m = m0 +m1 = total number of tests

r = # rejections

α = αm = critical level of the tests.

Further, in the derivations below, if nothing is said to the contrary,
we assume that the observed p-values are mutually independent.

Now, suppose m0 and m1 are non-random and tend to infinity
and that αm tends to zero, in a coordinated way so that m0F0(αm),
and m1F1(αm) are bounded. Accordingly, also the expected total
number of rejections is bounded. Then, by the standard Pois-
son limit theorem for the binomial distribution, the number of
false rejections is approximately Poisson distributed with param-
eter m0F0(αm) and the number of correct rejections is approx-
imately Poisson distributed with parameter m1F1(αm). It then
follows at once that the conditional distribution of the number of
false rejections, given that there are in total r rejections, is approx-
imately Binomial with number of trials parameter r and success
probability m0F0(αm)/(m0F0(αm) +m1F1(αm)). This is the same
as (1.8) if π0 = m0/m, π1 = m1/m.

If instead the mixture model (1.3) is assumed to hold, then

m0/m
P→ π0 as m → ∞. Thus, for any ε > 0 we have that for

sufficiently large m the number of false rejections is less than the
number of rejections of a sample of size (π0 + ε)m so that the
number of false rejections is stochastically smaller than a binomial
variable with m0 +εm trials and success probability F0(αm). Simi-
larly one gets an upper bound for the number of correct rejections,
and also corresponding lower bounds. Using monotonicity and the
Poisson limit distribution of binomial distributions, as above one
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obtains an approximate conditional binomial distribution with suc-
cess probability (1.8) for the number of false rejections.

Next, if instead αm is random and it is assumed that there exists

a non-random sequence α̃m such that m|F (αm) − F (α̃m)| P→ 0,
then a simple argument similar to the previous one shows that
asymptotically there are no p-values in the interval with endpoints
αm and α̃m. It then follows that the conditional distribution of the
number of false rejections is the same as if the rejection level was
α̃m, and hence the results above again apply. In particular this is
the case if αm is the r-th smallest of the p-values, for some fixed r.

Dependence and clustering of small p-values: So far we have as-
sumed that the p-values were independent. If they instead are
dependent, then the results above continue to hold if Leadbetter’s
conditions D′(αm) and D(αm) are satisfied; see Leadbetter (1974)
and Leadbetter and Rootzén (1998). Here D(αm) is a quite weak
restriction on dependence at long distances, and can be expected to
hold very generally. Instead D′(αm) restricts dependence between
neighboring variables. It may be violated in circumstances where
small p-values occur in clusters, and typically holds otherwise.

Clustering of p-values which could make D′(αm) invalid can be
investigated informally by inspection of the samples, and there is
also a large literature on formal estimation of the amount of cluster-
ing, as measured by the so-called Extremal Index, see e.g. Beirlant
et al. (2004), Section 10.3.2. However, the issue is somewhat deli-
cate: clustering caused by local dependence will violate the asymp-
totic Poisson distribution, but clusters of very small p-values may
also be caused by non-null experiments occurring at neighboring
locations, and this would then not contradict an asymptotic Pois-
son distribution. The latter situation, for example, is expected to
occur in the brain scan experiment discussed in Section 5 below.

Estimation of error control parameters: With standard notation in
multiple testing, let the random variables V and R be the number
of false positives, and the total number of rejections, respectively.
We now list number of common error control quantities, and how
they may be estimated using the results from Section 2 (it is as-
sumed that α and x are less than the threshold u). The second and
third one have already been discussed above, but are included for
completeness. For comprehensive listing and discussion of such pa-
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rameters we refer to Dudoit and van der Laan (2008). Motivation
of the estimators comes after the table. In each case a conservative
estimate is obtained by setting π̂0 = 1, and the degree of conser-
vatism can be judged directly from the formulas for the estimators.

Parameter Estimate

The Benjamini and Hochberg (1995) False Detection Rate:

FDR:= E
(
V
R | R > 0

)
Pr(R > 0) π̂0F̂0(α)

F̂ (α)
(1− e−mF̂ (α)).

The Storey (2002) False Detection Rate:

pFDR:= E
(
V
R | R > 0

) π̂0F̂0(α)

F̂ (α)
.

The Efron et al. (2001) Local False Detection Rate:

fdr(x):=
π0

d
dx
F0(x)

d
dx
F (x)

π̂0
d
dx
F̂0(x)

d
dx
F̂ (x)

.

The FamilyWise ERror:

FWER:= Pr(V 6= 0) 1− e−mπ̂0F̂0(α).

The k-FamilyWise ERror:

k-FWER:= Pr(V ≥ k)
∞∑
i=k

(mπ̂0F̂0(α))i

i! e−mπ̂0F̂0(α).

The estimate of pFDR is a consequence of the conditional bino-
mial distribution of the number of false positives. Specifically,
conditional on R = r > 0 the number of false positives has a bi-
nomial distribution with parameters r and π0F0(α)/F (α) so that
E
(
V/R | R = r) = π0F0(α)/F (α). Hence we also have that

E
(
V/R | R > 0) = π0F0(α)/F (α). The estimate of FDR is ob-

tained by using the pFDR estimate for the first factor and the
asymptotic Poisson distribution of the number of false positives to
estimate the second factor. The FWER and k-FWER estimates
use the asymptotic Poisson distribution of the number of false pos-
itives. Since they also involve π̂0 they may be harder to use in
practice.
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It may be noted that our estimates of pFDR and FDR are slightly
different from the Storey (2002) estimates: translating Storey’s
estimates to the present situation, Storey’s estimate of FDR is the
same as our estimate of pFDR, and Storey’s estimate of pFDR is
obtained by dividing our pFDR estimate by 1− (1− F0(α))m.

The pFDR estimate also works quite generally for dependent
p-values, see Section 2. The other three estimates require that
“local dependence” of p-values is negligible for small p-values so
that there is no clustering of extreme values, cf. the discussion of
the condition D′(αn) at the end of Section 3.

4 Motivation

In this section we give the theoretical motivation for the models
(1.1) and (1.2) by showing that, very generally, they are asymp-
totically valid when m is large and one is far out into the tails –
basically the models apply if tails of test statistics have a natural
“asymptotic stability property”, or, equivalently, if the distribution
of test statistics is in the domain of attraction of an extreme value
distribution. This motivation of course comes from general math-
ematical arguments (as does the motivation for the use of normal
distribution), and not from, say, specifics of biology.

Practical motivation is given by the analysis of three examples
in Section 5 below and, of course, more generally from very exten-
sive experience in using extreme value statistics in many areas of
science.

For simplicity, in this section we phrase the discussion in terms
of large values of the test statistic being “significant” i.e. leading
to small p-values. Let Th, T0, and T1 be random variables which
have the distribution of the test statistic under the hypothetical
(=theoretical) null distribution, the true null distribution, and the
distribution under the alternative hypothesis, respectively, and let
Gh, G0, and G1 be the corresponding distribution functions. Fur-
ther, throughout let Ḡ = 1 − G denote the tail (or “survival”)
function associated with a distribution function (d.f.) G.

The simplest motivation is as follows. Suppose that there are
constants Ch > 0 and γ̃h > 0 such that

Ḡh(x) ∼ Ch
1

x1/γ̃h
, as x→∞, (4.1)
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which e.g. holds for the Student one- and two- sample t−statistics,
and for F−statistics. Further suppose that Ḡ0 and Ḡ1 satisfy cor-
responding expressions. For one- and two-sample t−statistics this
again holds very generally indeed, with γ̃h = γ̃0 = γ̃1 = f , where f
is the degrees of freedom; see Zholud (2011a). The distribution F0

of the p-values under the true null distribution is G0(G←h ), where
G← denotes is the right continuous inverse of a d.f. G. Thus,

F0(x) = G0(G←h (x)) ∼ C0
1(

(x/Ch)−γ̃h
)1/γ̃0 = c0x

1/γ0 , as x→ 0,

with c0 = C0/C
γ̃h/γ̃0
h and γ0 = γ̃h/γ̃0, so that (1.1) holds. Similarly

it follows that (1.2) holds with c1 = C1/C
γ̃h/γ̃1
h and γ1 = γ̃h/γ̃1.

However, (1.1) and (1.2) hold much more generally. Let T be
a random variable with d.f. G and suppose that G satisfies either
one of the following two equivalent conditions: a) G belongs to
the domain of attraction of an extreme value distribution, i.e. the
distribution of linearly normalized maxima of i.i.d. variables with
d.f. G converges, or b) the tail ofG is asymptotically stable, i.e. the
distribution of a scale normalized exceedance of a level u converges
as u tends to the right hand endpoint of the distribution G. Then
there are constants σ = σu > 0 and γ such that

Pr

(
T − u
σ

> x | T > u

)
≈
(

1 +
γ

σ
x
)−1/γ

+
, (4.2)

for u close to the right endpoint of G. Here the + signifies that
the expression in parentheses should be replaced by zero if it is
negative, and the right hand side is the tail function of a Gener-
alized Pareto distribution. The parameter γ can be positive, zero,
or negative. For γ = 0 the last term in (4.2) is interpreted as its
limit as γ → 0, i.e. it is e−x/σ. Writing v = Pr(T > u) we get that

Ḡ(x) ≈ v
(

1 +
γ

σ
(x− u)

)−1/γ

+
, for x > u,

and

Ḡ←(y) ≈ u+
σ

γ

((
v

y

)γ
− 1

)
, for y ≤ v.

Suppose now that Gh and G0 satisfy (4.2). Then, repeating the
calculations above (with the same u for both distributions) we get,
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with self-explanatory notation, that for γh, γ0 > 0

F0(x) ≈ v0

(
1− γ0σh

γhσ0
+
γ0σh
γhσ0

(vh
x

)γh)−1/γ0

≈ v0

(
γhσ0

γ0σh

)γ0
v
−γh/γ0
h xγh/γ0 ,

for small x, so that (1.1) again holds.

If instead γh = γ0 = 0 one obtains

F0(x) ≈ v0x
σh/σ0 ,

which again is of the form (1.1). Cases where one γ is > 0 and the
other is ≤ 0, or where one γ is ≥ 0 and the other is < 0 are not
interesting, since one of the tails then completely dominates the
other. Calculations become more complex if both γ-s are negative,
so that the corresponding generalized Pareto distributions have a
finite upper endpoint. However such cases are not expected to
occur in practice, either. The motivation for (1.2) is the same as
for (1.1).

5 Examples

In this section the methods introduced here are illustrated by anal-
yses of three different data sets. All analyses were made using the
SmartTail tool, see also Zholud (2011c) and Zholud (2011b).

Example 1: Yeast genome screening, Warringer et al. (2003)
and Zholud et al. (2011). The data sets in this example come from
a long sequence of Genome Wide screening experiments for detect-
ing differential growth under different conditions. The experiments
use Saccharomyces cerevisiae, baker’s yeast, a model organism for
advancing understanding of genetics. The experiments were run
on a Bioscreen Microbiology Reader (also known as Bioscreen C
Analyzer). In an experiment different yeast strains are grown on
two 100-well (10 × 10) honeycomb agar plates. The output is
200 growth curves, each representing a time series of optical den-
sity measurements from a well. Here we only consider one of the
parameters extracted from these curves, the so-called logarithmic
doubling time.
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In a typical experiment a mutant yeast strain with one gene
knocked out is grown in the same position in each of the two plates.
A reference wild type strain without any gene knockout is grown
in four wells in each plate, one well in each quadrant of the plate.
Differential growth caused by a mutant is measured separately for
each of the two plates by subtracting the average of the logarithmic
doubling times of the four reference strains from the logarithmic
doubling times for the mutant strain. This gives one value for each
plate. Differential growth is then tested by comparing these two
values with zero in a one-sample t−test with 1 degree of freedom.

We consider three data sets: A Wild Type Data Set with 1,728
observed p-values, a Genome Wide Data Set with 4,896 observed
p-values, where the single knockout mutants and reference strains
were grown under normal conditions, and a Salt Stress Data Set
with 5,280 observed p-values, where all single knockout mutants
and reference strains were grown in a salt stress environment. The
Wild Type data set was obtained for quality control purposes, and
hence was analyzed in exactly the same way as the Genome Wide
scans. However for this data set one knows that there are no real
effects, so it in fact is a sample from the true null distribution.
These data sets are available from the PROPHECY database, see
the list of references, and Fernandez-Ricaud et al. (2006).

As a theoretical background, from Zholud (2011a) follows that
for one sample t−tests the models (1.1) and (1.2) are expected to
hold, with γ0 = γ1 = 1. It then follows that also (2.4) holds, with
γ = 1 and c = π0c0 + π1c1. However, non-asymptotically, other
values of the γ-s may give a reasonable fit.

Figure 2 illustrates the results of the analysis of the wildtype
data set (recall that this data set is a sample from the true null
distribution). From the top right and middle panels it is clear that
the true null distribution is different from the uniform distribution,
and also that the model (1.5) fits quite well. A formal likelihood
ratio test of the hypothesis γ0 = 1 gave the p-value 0.67, and
setting γ0 = 1 does not change the estimates much (the estimated
value of γ0 is 0.96). The remaining three plots in Figure 2 illustrate
different ways of checking the model assumption (1.5).

The top right panel shows the Kolmogorov-Smirnov 95% con-
fidence limits for the exponential distribution of − log(p/u)|p ≤ u
transformed to the uniform scale, see Lilliefors (1969) and Schafer

Copyright c© 2011 by Dmitrii Zholud
www.zholud.com 52 md5 hash:

7B0B4906E175DBA0F2C4901E199E418D

http://www.zholud.com


Tail estimation methods in high-throughput screening

et al. (1972). The test does not reject the model (1.5) (p-value
0.49). The bottom right panel shows that the estimate of F̂0 is
quite insensitive to the choice of the threshold u. The individual
estimates of 1/γ0 (bottom left panel) and c0 (not shown) change
slightly more when u is changed, but are still quite stable. The two
bottom plots are customarily used to guide the choice of u and to
check the model fit.
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Figure 2: The Wild Type Data Set
Top left: Empirical distribution function. Dashed line is the uniform

distribution. Top middle: Empirical distribution function for p ≤ 0.05

(122 values). Solid line is (1.5) estimated using u = 0.05; dashed

line is the uniform distribution. Dotted lines are 95% pointwise confi-

dence intervals. Top right: Empirical conditional distribution function of

− log(p/0.05)|p ≤ 0.05 transformed to the uniform scale and Kolmogorov-

Smirnov 95% goodness of fit limits. Bottom left/right: Estimated 1/γ0
and F̂0(0.001) as function of the threshold u. Red line is the same func-

tion but with γ0 set to 1. Dotted lines are 95% pointwise confidence

intervals.

The left panel of Figure 3 indicates that the model (2.4) fits the
Genome Wide Data Set well (the Kolmogorov-Smirnov p-value was
0.38). The estimates of pFDR at α = 0.001 are somewhat higher
for small values of the threshold u. This behavior is reversed if γ
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is set to 1. The model checking plots corresponding to the four
last panels in Figure 2 where slightly less stable than those for the
wildtype data set.
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Figure 3: The Genome Wide Data Set
Left: Empirical distribution function for p ≤ 0.035 (525 values); dashed

line is the uniform distribution. Solid line is (2.4) estimated using u =

0.035; dot-dashed line is the same function for γ0 set to 1. Middle: fdr(x)

(smooth curve) and empirical FDR (edgy curve) for u = 0.035, π0 =

1. Horizontal line is fdr(x) with γ0 set to 1. Right: pFDR at α =

0.001 as function of the threshold u, for π0 = 1. Dot-dashed line is the

same function with γ0 set to 1. Dotted lines are the corresponding 95%

pointwise confidence intervals.

The estimate of pFDR at α = 0.001 is 0.34 (here γ0 = 0.96 and
γ = 1.03 are estimated from the data using u = 0.05 and u = 0.035
accordingly). Since there were 14 p-values less than 0.001 we hence
estimate the expected number of false positives at this level to be
4.76. Using the binomial approximation to the number of false
positives, we further estimate that with probability greater than
95% the number of false positives was at most 8.

If we instead had believed in a uniform distribution under the
null hypothesis, we would have estimated the mean number of false
positives to be 4 and that the number of false positives with prob-
ability greater than 95% was less than 7 - a somewhat too positive
picture of experimental precision.

A further practically important question is “Which out of the 14
rejections are the true positives?”. Sometimes one meets the idea
that one should make an ordered list of the p-values corresponding
to rejected null hypotheses and make further investigation starting
with the smallest p-value, then go to the next smallest one, and so
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on, in the hope that the smaller the p-value, the more likely it is
to correspond to true positives, see e.g. Noble (2009). For t− and
F−tests with low degrees of freedom, and far out in tails theory
suggests that this hope often is unfounded, see Zholud (2011a).
Nevertheless, for less extreme situation Efron’s fdr(x) can be used
to measure how likely it is that a rejection is a false positive. The
fdr(x) plot in middle panel of Figure 3 decreases as x tends to
zero, but the decrease is small. This indicates that it is slightly
(but only slightly) more probable that it is the rejections with the
smallest p-values which are the true positives. However, it is still
quite likely that also some of the tests with the smallest p-values
are false positives.

Theoretically, that fdr(x) is almost constant for small x of
course is a consequence of the asymptotic tail behavior of the
t−statistics discussed above. For the present data set this theory
is also borne out by the empirical results.
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Figure 4: The Salt Stress Data Set
Left: Empirical distribution function for p ≤ 0.035 (409 values); dashed

line is the uniform distribution. Solid line is (2.4) estimated using u =

0.035; dot-dashed line is the same function for γ0 set to 1. Middle: fdr(x)

(smooth curve) and empirical FDR (edgy curve) for u = 0.035, π0 = 1.

Horizontal line is fdr(x) with γ0 set to 1. Right: pFDR at α = 0.001 as

function of the threshold u, for π0 = 1. Red line is the same function with

γ0 set to 1. Dotted lines are the corresponding 95% pointwise confidence

intervals.

The Salt Stress Data Set by and large behaved in the same way
as the Genome Wide Data Set, see Figure 4. A difference was
that model checking plots were more stable, and in fact model fit
seemed even better than for the wild type data.
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To illustrate the gain in efficiency from using the estimates from
Section 2 instead of the empirical distribution function estima-
tor we set x = 0.001 and SmartTail estimated that the ratio
Var(F̂0(x))/Var(F̂E(x)) = 0.46 for the Wild Type Data Set where
u = 0.05, and for u = 0.035 that Var(F̂ (x))/Var(F̂E(x)) was 0.7 for
the Genome Wide Data Set and 0.69 for the Salt Stress Data Set.
Variance estimates for the version of pFDR which uses the empir-
ical distribution functions do not seem to be available, and hence
we have not compared the variance of the pFDR estimates from
Section 2 with the variance of the empirically estimated pFDR.

At this point it should perhaps be recalled that the estimates of
fdr and pFDR are somewhat biased upwards as we have set π0 = 1.
However, for the situations we are interested in, the true π0 should
be close to 1, and this bias accordingly is insignificant. The same
comment applies also to all the plots which follow.

Example 2: Association mapping in Arabidopsis, Zhao et al.
(2007). This data set comes from 95 Arabidopsis Thaliana sam-
ples, with measurements of flowering-related phenotypes together
with genotypes in the form of over 900 short sequenced fragments,
distributed throughout the genome. The goal was association map-
ping, i.e. identification of regions of the genome where individuals
who are phenotypically similar are also unusually closely geneti-
cally related. A problem is that spurious correlations may arise
if the population is structured so that members of a subgroup,
say samples obtained from a specific geographical area, tend to
be closely related. One of the main thrusts of the paper was to
evaluate 9 different statistical methods to remove such spurious
correlations. But of course an ultimate aim is to identify interest-
ing genes.

Here we only consider the SNP (Single Nucleotide Polymor-
phism) data, and one phenotype, the one called JIC4W, which we
choose since it was of special interest in the paper. Further, we only
display results for two of the statistical methods, the KW method
which just consisted in making Kruskal-Wallis tests without cor-
rection for population structure, and a method called Q+K which
may have been the most successful of the 9 methods studied. The
number of tests was 3745.
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Figures 5 and 6 show that the model (2.4) fits both the Kruskal-
Wallis and the Q+K p-values well for the values u = 0.001 and u =
0.01 of the threshold accordingly. The p-values for the Kolmogorov-
Smirnov test were 0.43 and 0.38, respectively. The estimate of
pFDR at α = 0.0001 for the Kruskal-Wallis test was 0.013, and
for the Q+K the estimate was s0.1, i.e. more than 7 times bigger.
Both these numbers assume that the true null distribution is the
uniform distribution. Zhao et al. (2007) argue that most of the
Kruskal-Wallis p-values are spurious. We also performed the same
analysis for the other test methods proposed in their paper. For
most, but not all, of them, the model (2.4) gave a good fit. Of
course the quality of the fit also depended on the choice of u.

Led by some speculation in the paper, we tried to use chromo-
somes 2 and 3 as a surrogate null distribution sample. However,
the tail distribution of p-values in those chromosomes were in fact,
if anything, heavier than for
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Figure 5: The KW analysis of the JIC4W data set
Left: Empirical distribution function. Dashed line is the uniform distri-

bution. Middle: Empirical distribution function for p ≤ 0.001 (99 values).

Solid line is (2.4) estimated using u = 0.001. Dotted lines are 95% point-

wise confidence intervals. OBS scale: x-axis is stretched 10 times. Right:

pFDR at α = 0.0001 as function of the threshold u, for π0 = 1. Dotted

lines are 95% pointwise confidence intervals.

those in chromosomes 1, 4, 5, although the differences were well
within the range of random statistical variation. Thus if there
indeed were no effects present in chromosomes 2 and 3, then also
most of the positives in the other genes might be false, as also is
discussed in Zhao et al. (2007).
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Figure 6: The K+Q analysis of the JIC4W data set
Left: Empirical distribution function. Dashed line is the uniform distri-

bution. Middle: Empirical distribution function for p ≤ 0.01 (76 values).

Solid line is (2.4) estimated using u = 0.01. Dotted lines are 95% point-

wise confidence intervals. Right: p-FDR at α = 0.0001 as function of

the threshold u, for π0 = 1. Dotted lines are 95% pointwise confidence

intervals.

Again to illustrate the gain in efficiency from using the estimates
from Section 2, we set x = 0.0001 and SmartTail for u = 0.001 es-
timated that Var(F̂ (x))/Var(F̂E(x)) was 0.53 for the KW method
and 0.85 for the Q+K method and u = 0.01. Note that the values
of γ for these two sets of p-values were 2.6 and 1.5 accordingly.

Example 3: fMRI brain scans, Taylor and Worsley (2006). The
Functional Image Analysis Contest (FIAC) data set contains re-
sults from an fMRI experiment aimed at exploring functional orga-
nization of the language network in the human brain. The part we
use here is “the Block Experiment”, see Dehaene-Lambertz et al.
(2006). In this experiment 16 subjects were instructed to lie still
in a scanner with eyes closed and to attentively listen to blocks of
6 sentences, either different ones or the same sentence, and either
read by the same speaker or by different speakers. Each subject
was asked to participate in two “runs”, with 16 blocks presented
in each run. In Taylor and Worsley (2006), for each run and each
voxel in the brain scans, the data was used to study the signifi-
cance of two contrasts, “different minus same sentence” and “dif-
ferent minus same speaker” and the interaction between these two.
Roughly 35, 000 voxels per subject were used. For each voxel in
each subject and each run quite sophisticated preprocessing was
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used to construct the corresponding 3 t−test quantities. One sub-
ject dropped out of the experiment, and one only completed one
run, so the end results was (15 × 2 + 1) × 3 = 93 sets of roughly
35, 000 t−test quantities.

To study the fit of Equation (2.4) we transformed these t−values
to p-values using a t−distribution with 40 degrees of freedom (this
was the approximate degrees of freedom according to Taylor and
Worsley (2006) - it can in fact be seen that to check model fit the
precise number is not important). For each of the 93 resulting data
sets of about 35,000 p-values we performed a Kolmogorov-Smirnov
goodness-of-fit test of the fit of the model (2.4) for the p-values
which were smaller than the threshold u = 0.01. In these 93 data
sets the smallest number of p-values less than 0.01 was 117, and the
largest number was 973. Figure 7 shows that the distribution of the
93 goodness-of-fit p-values are somewhat skewed towards smaller
values, as compared with the uniform distribution. However, this
deviation from uniformity is small, and the overall impression is
that Equation (2.4) fits the Block Experiment FIAC data well.
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Figure 7: Empirical d.f. of the Kolmogorov-Smirnov
goodness-of-fit p-values from the 93 sets of p-values in
the fMRI brain scan data set.

In fact, even for the two data sets where (2.4) was clearly re-
jected (the Kolmogorov-Smirnov p-values were 0.005 and 0.007),
the Kolmogorov-Smirnov plots showed that the deviations from the
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model were still quite moderate, and, as expected, even smaller for
thresholds u lower than 0.01 (Kolmogorov-Smirnov p-values 0.32
and 0.29 accordingly for u = 0.005).

This FIAC experiment opens possibilities for substantial fur-
ther analysis. For example, Taylor and Worsley (2006) suggest
randomly changing signs in contrasts to get surrogate observations
from the true null distribution. A null sample might also be ob-
tained from areas in the brain which are not involved in language
processing. However, we stop at this point.

6 Discussion and conclusions

This paper is about high-throughput screening – experiments where
very many individual statistical tests are performed, but where one
expects that it is only possible to detect a real effect in a small or
moderate number of the tests, so that testing is done at quite
extreme significance levels. High-throughput testing typically in-
volves considerable preprocessing of data before the tests are made.
This, and the complexity of the experiments often cause the true
null distribution to be different from the theoretical null distribu-
tion. We believe that if one suspects this is the case it may be
well worth the effort to try to obtain a sample from the true null
distribution, both to get a better grip on risks for false positives
and for general quality control purposes. Examples of how this can
be done are mentioned above.

This paper gives answers to the two questions from the intro-
duction: “How many of the positive test results are false?” and
“How should one judge if one preprocessing method makes the
true null distribution closer to the theoretical one than another
method?”. The questions concern tails of distributions, with the
central part of the distributions being largely irrelevant. We ac-
cordingly use Extreme Value Statistics in the answers. Our answer
to the first question is that the conditional distribution of the num-
ber of false positives is approximately binomial, and efficient and
accurate methods to estimate the success probability parameter of
this binomial distribution. The answer rests on assuming a simple
polynomial model for the lower tail of the distribution of p-values
(cf. (1.5) and (1.6)). In Section 4 this assumption is shown to be
quite generally asymptotically valid. However, of course, whether
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these asymptotics are relevant in a concrete testing problem has
to be checked from data. We also provide methods for such model
checking (see the analyzes in Section 5, in particular Figure 2).

Our answer to the second question is to compare the estimates
of the true null distribution with the theoretical uniform distribu-
tion. This can be done informally from plots, or by a formal test
of the hypothesis that the parameters in the null distribution (1.1)
satisfy c0 = γ0 = 1. Again it is useful to complement this analysis
with model checking.

A third basic question is “Which of the rejections are caused by
real effects?”. The answer one might hope for is that the smallest
of the p-values which lead to rejections are those which correspond
to real effects. Our fdr(x) plots can be used to judge if this in fact
is the case. However, both from asymptotic theory and from our
experience with data analysis, the answer might be disappointing:
often the real effects are fairly randomly spread out amongst the
rejections.

The p-values obtained from high-throughput screening some-
times are dependent. However, not unusually this dependence
affects the extreme tails less than the centers of distributions -
whether this is the case or not depends on the amount of clustering
of small p-values. This is discussed in Sections 2 and 3. A comfort-
ing message is that even in cases where dependence persists into
the extreme tails, the estimates of basic quantities, such as pFDR,
still under very wide conditions are consistent and asymptotically
normal. There exists a very extensive literature about dependent
extremes for the case when observations are ordered “in time”.
However less is proven for the much more complicate “spatial” de-
pendence patterns which may occur in high-throughput testing,
and more research is needed.

We have applied the methods developed in this paper to data
from two genomics experiments, a Bioscreen yeast experiment, and
an Arabidopsis study, and to a fMRI brain scan experiment. For
all three data sets our analysis methods seem to fit the data well,
and to provide useful information. In particular, they proved that
for the yeast data the real null distribution was different from the
uniform distribution, and quantified the rather low specificity of
the tests. For the Arabidopsis data the methods put numbers on
the differences between alternative statistical processing methods
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and indicated that even for the best test method, specificity may
not have been all that good.

Finally, the aim of this paper is not just technical development.
It is also to deliver a message: If you are concerned with false pos-
itives in high-throughput testing, then it is the tails (and not the
centers) of distributions which matter! And, Extreme Value Statis-
tics is the instrument for looking at tails. Further, already in the
near future, screening experiments will become even much larger,
and testing will be done at even more extreme significance levels -
so the issues raised in this paper will become even more important
than they now are.
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Tail approximations for the Student t−, F−,
and Welch statistics for non-normal and not

necessarily i.i.d. random variables

Dmitrii Zholud ∗

Abstract

Let T be the Student one- or two-sample t−, F−, or
Welch statistic. Now release the underlying assumptions of
normality, independence and identical distribution and con-
sider a more general case where one only assumes that the
vector of data has a continuous joint density. We deter-
mine asymptotic expressions for P (T > u) as u → ∞ for
this case. The approximations are particularly accurate for
small sample sizes and may be used, for example, in the
analysis of High-Throughput Screening experiments, where
the number of replicates can be as low as two to five and of-
ten extreme significance levels are used. We give numerous
examples and complement our results by an investigation of
the convergence speed - both theoretically, by deriving exact
bounds for absolute and relative errors, and by means of a
simulation study.
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1 Introduction

This article extends and fills out early results of Bradley and Hotel-
ling on the tails of the distributions of, probably the most popular
and frequently used statistical tests under arbitrary distributional
assumptions. We present asymptotic results which quantify the
effect of non-normality, dependence, and non-homogeneity of data
on distribution tails of the Student one- and two-sample t−, F−
and Welch statistics. The approximations are valid for samples
of any size, but are most useful for very small sample sizes when
approximations based on Central Limit Theorem are inaccurate.
This problem has gained significant new importance through the
explosive increase of high-throughput testing, where sample sizes
are often as small as two to four, but when instead thousands -
or millions - of tests are performed, at extremely high significance
level. Below we briefly illustrate this point by describing a biolog-
ical experiment which in fact was the motivation for the present
paper.

Let X ∈ Rn, n ≥ 2, be a random vector and Tn = Tn(X) be a
Student’s one- or two-sample t−test or an F−test (an F−test for
comparison of variances, an F−test used in one-way ANOVA anal-
ysis, an F−test in full/fractional factorial experimental designs, a
lack-of-fit sum of squares test, or an F−test for comparison of two
nested linear models in regression analysis). Now let MVN(µ,Σ)
denote the multivariate normal distribution with mean vector µ
and covariance matrix Σ, and define

t(u) = P (Tn > u|H0) ,

the distribution tail of Tn under the “standard” null hypothesis
H0 : X ∼ MVN(0, σ2In), where σ2 > 0 and In is the identity
matrix. Here we study the asymptotic behavior of the tail distri-
bution of Tn under the alternative hypothesis H1 for small and fixed
sample sizes, that is,

P (Tn > u|H1) , as u→∞ for n fixed.

Further, let g0(x) and g1(x) be the joint densities of the data vector
X under some null and alternative hypotheses H0 and H1 respec-
tively, and let G be a set of continuous densities that satisfy the
regularity constraint of Theorem 2.1, 3.1 or 5.1 below for the three
tests. Our main result is as follows.
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Theorem 1.1. There exists a functional K : G → R+ such that
∀g0, g1 ∈ G and fixed n the limit expression

P (Tn > u|H1)

P (Tn > u|H0)
=
Kg1

Kg0

+ o(1) as u→∞ (1.1)

holds with constants 0 < Kg0 = K(g0) < ∞ and 0 < Kg1 =
K(g1) <∞. Further, MVN(0, In) ∈ G and K(MVN(0, In)) = 1.
The exact forms of the constants Kg = K(g) for arbitrary densities
g are given in (2.3), (3.3) and (5.3) below.

Note that if Tn is a Z-test and g0 and g1 are MVN(0, In) and
MVN(µ× 1, In) respectively, then the right-hand side of (1.1) is
either 0 , 1 or ∞ for µ < 0, µ = 0 and µ > 0, respectively. This
shows that small deviations from g0(x) do not necessarily induce
small changes in the tails of the distribution of the test statistic.

The proofs of (1.1) for the different test statistics all follow a
common path: through suitably chosen changes of variables the
problem is reduced to using a lemma, down in Appendix A, which
describes the behavior of integrals over small balls around zero in
Rk, k ≥ 1.

Figure 1 below was the original motivation for writing this article.
It comes from a study of the systematic errors in a particular kind
of biological experiments, so called Bioscreen array experiments,
see Warringer and Blomberg (2003) and Warringer et al. (2003),
and their impact on false positive and false discovery rates. Omit-
ting details, the parameter of interest, called LSC, was assumed to
be normally distributed with mean µ = 0 if the null hypothesis H0

were true.

However, a histogram of the LSC values in the wildtype dataset
for which H0 is known to be true, see Figure 1, left panel, showed
clear deviations from normality. We therefore plotted the empir-
ical cumulative distribution function (CDF) for the 1728 p-values
pi = t(T2(Xi)) computed in the wildtype experiment. Each one-
sample t−test T2(Xi), i = 1, 2, .., 1728, is a function of a pair
Xi = (LSCi,1, LSCi,2) of LSC replicates, and t(·) is the tail of
Student’s t−distribution with one degree of freedom.
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Figure 1: The Wild Type Data Set
A histogram of 3456 LSC values from the wildtype dataset (left) and

empirical CDF based on the corresponding 1728 p-values (right).

The empirical CDF plot in Figure 1 showed clear deviation from the
theoretical uniform distribution, and subsequent analysis revealed
spatial systematic effects, which, in part, explained this deviation.
While the nature of these systematic effects was not fully under-
stood, it was still possible to use the p-values obtained in wildtype
experiment to improve estimates of false discovery rates in other
Bioscreen studies: the key observation, from the right panel of Fig-
ure 1, is that both lower and upper tails of the plot approached
straight lines, as indicated by the two arrows.

The connection between the straight tails observed in Bioscreen
HTS data and (1.1) is as follows. Let g1(x) be the joint density
of the data vector X and let F1(x) be the CDF of the p-value
p = t(T2(X)) that corresponds to the right-sided t−test. Assuming
(1.1) holds with Kg0 = 1 it follows that F1(0) = 0 and the right-
sided derivative of F1 at zero is equal to

lim
x→0+

F1(x)− F1(0)

x
= lim

u→∞

F1(t(u))

t(u)
= lim

u→∞

P (t(T2(X)) ≤ t(u))

t(u)

= lim
u→∞

P (T2(X) ≥ u)

t(u)
= lim

u→∞

P (T2(X) ≥ u)

P (T2(X) ≥ u|H0)
= Kg1 .
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The constant Kg1 , the slope of the line tangent to the graph
of F1(x) at zero, can be estimated from data using technique sim-
ilar to peak-over-threshold method in Extreme Value Theory, see
Rootzen and Zholud (2011). If, on the other hand, the density g1

were known, then the exact value of Kg1 could be computed ac-
cording to formula (2.3) of Theorem 2.1.

There is an extensive literature on the behavior of the Student
t− and F− statistic under deviation from normality. Below we fo-
cus mostly on the Student one-sample t−statistic, with references
to the Student two-sample t−, F−, and Welch statistics given as
needed.

A brief introduction to the Student one-sample t−test can be
found in Zabell (2008), and Cressie (1980) is a review with em-
phasis on understanding of the behavior of the test statistic under
non-normality.

A main theme in the literature is the Normal Approximation,
which is commonly stated as follows: “if the sample size is large
enough and the population distribution is in the domain of attrac-
tion of the normal law, then the Student one-sample t−statistic
is approximately N(0, 1) distributed”, see e.g. Giné et al. (1997).
The non-central t−statistic is discussed in Bentkus et al. (2007).
However, the Normal Approximation is inaccurate for small sample
sizes, which are the center of interest in this paper.

Additional accuracy in the Normal approximation can be ob-
tained by using the first few terms of a Gram-Charlier series, Geary
(1936), Bartlett (1935), or Edgeworth expansion, see e.g. Field and
Ronchetti (1990), Hall (1987) and Gaen (1949, 1950). The Edge-
worth expansion improves the Normal approximation and performs
better for smaller sample sizes, but still is inaccurate in the extreme
tail area.

A different approach is to use Saddlepoint approximations to
the distribution of the test statistics, see e.g. Zhou and Jing (2006),
Jing et al. (2004) and Daniels and Young (1991). The simulation
study of Jing et al. (2004) showed that the Saddlepoint approxi-
mation for Student’s t−statistic is very accurate in the tail area,
however it is not known whether the relative error of such approx-
imation tends to zero as one goes far out in the tail. The formulas
for the Saddlepoint approximation do not give explicit formulas for
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the tail behavior of the test statistic and are computationally com-
plex. In particular, Saddlepoint approximations require knowledge
of the population density, which limits their use in statistical in-
ference. Details on Saddlepoint approximations can be found in
Kolassa (2006), Jensen (1995), Reid (1988) and Lugannani and
Rice (1980).

The Student one-sample t−test is closely related to the so-called
self-normalized sum, see e.g. Shao (2004), Shao (1997) and Logan
et al. (1973). The exact distribution of t−statistic for some special
cases is discussed in Eden and Yates (1933), Rider (1929), Perlo
(1933) and Laderman (1939).

Fundamental results on the Student two-sample t−test and
F−test were formulated by Fisher (1924, 1925, 1935a,b) and the
behavior of these tests under deviation from standard assumptions
was thoroughly studied. One particular case is known as the two-
means Behrens-Fisher problem, see e.g. Sawilowsky (2002) and
Kim and Cohen (1998) and the list of references in these papers,
and addresses the question of using the Student two-sample t−test
when the variances of the two populations are unequal. A com-
mon approach to the Behrens-Fisher problem is to use the Welch-
Satterthwaite approximation, see Aspin and Welch (1949), Welch
(1937, 1947), and Satterthwaite (1941, 1946). Exact distribution
for the Welch t−test for odd sample sizes is given in Ray and Pit-
man (1961). The formulas in the latter paper can be easily modified
to hold for the Student two-sample t-test as well.

The effect of non-normality on the F−test was considered by
e.g. Box (1953, 1954), Gaen (1950) and David and Johnson (1951).

Finally, the papers which are closest to the results of our re-
search are Bradley (1952a,b) which describe the tail behavior of
the Student one- and two- sample t−test and F−test under vari-
ous deviations from the standard assumptions.

Bradley covers the Student one-sample t−test for i.i.d. non-normal
observations, and also makes a somewhat less complete study of
the corresponding cases for the Student two- sample t−test and
the F−test of equality of variances. Bradley (1952b) derives the
constant Kg from geometrical considerations, but does not state
any assumptions on the underlying population density which en-
sure that the results hold. Bradley (1952a), on the other hand,
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gives assumption on the population density for the formulas to
hold. However, the author overlooked that applying the Leibnitz’s
rule for differentiation under the integral sign requires that the in-
tegration is taken over a set of finite measure. Consequently, the
assumptions of Bradley are not sufficient.

Hotelling (1961) studies the Student one-sample t−test for an
“arbitrary” joint density of the data vector. Hotelling derives the
constant Kg assuming that the limit in the left-hand side of (1.1)
exists and that the function

Dn(ξ) =

∞∫
0

rn−1g(rξ1, · · · , rξn)dr

is continuous for the two population densities g0 and g1. When it
comes to the examples, however, the existence of the limit in (1.1)
is taken for granted and the assumption of continuity of Dn(ξ) is
never verified.

Our results cover general case where neither independence nor iden-
tical distribution is assumed, and hold for both the Student one-
and two- sample t−tests and F−test of the equality of variances.
We also derive the asymptotic formula for the Welch t−test and of-
fer a different way of proof which may be applied to a wider class of
statistical tests: in particular, F−tests in their most general mean-
ing, and, perhaps, other statistical tests that have χ2-distributed
denominator under the null hypothesis, see Appendix A.

We also provide general (and correct) conditions which ensure that
the asymptotic formulas are valid, and simpler versions of those
which can be easily checked in many situations.

The structure of this paper is as follows. Sections 2 - 5 contain
the main theorems and examples, and Section 6 is a brief note on
the speed of convergence and on second and higher order terms in
the asymptotic expression (1.1). Section 7 complements the ana-
lytical results with a simulation study. The key lemma used in the
proofs is given in Appendix A, and a discussion of the regularity
conditions can be found in Appendix B. Appendix C contains ta-
bles related to Sections 2 and 3 and figures from the simulation
section.
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2 One-sample t−test

The aim of the current section is to establish asymptotic expres-
sion for the probability of high level excursions of the Student one-
sample t−statistic. The setting is that the population distribution
may be non-normal, and standard assumptions of independence
and homogeneity are relaxed as well.

Let X = (X1, X2, .., Xn), n ≥ 2, be a random vector with
joint density g and define

Tn =
√
n

X√
S2
,

where X and S2 denote the sample mean and sample variance of the
vector X. Introduce the unit vector Id = (1/

√
n, 1/

√
n, .., 1/

√
n) ,

and assume that

g(xId) > 0 for some x ≥ 0 (2.1)

and that
∞∫

0

rn−1 sup
‖ξ‖<ε,
ξ∈L⊥

g
(
r (Id + ξ)

)
dr <∞ (2.2)

for some ε > 0, where L is a linear subspace of Rn spanned by the
vector Id and L⊥ is its orthogonal complement. Finally, let

Kg = 2
π
n
2

Γ(n2 )

∞∫
0

rn−1g
(
rId
)
dr (2.3)

be a constant determined by the density g and sample size n.

Theorem 2.1. If g is continuous and satisfies (2.1) and (2.2),
then

P (Tn > u)

tn−1(u)
= Kg + o(1) as u→∞, (2.4)

where tn−1(u) is the tail of the t−distribution with n− 1 degrees of
freedom and 0 < Kg = K(g) <∞.
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Proof. The starting point of the proof is the equality

P (Tn > u) =

∫
D1

g(x)dx,

where D1 = {x : Tn > u} and dx is the notation for dx1dx2..dxn.
We now conduct a series of variable changes. Let e1, e2, .., en be
the standard basis in Rn and A be an orthogonal linear operator
which satisfies

Aen = Id. (2.5)

First, changing coordinate system x = Ay we have

X =
1√
n
yn and S2 =

1

n− 1

n−1∑
i=1

y2
i .

Therefore

P (Tn > u) =

∫
D2

g(Ay)dy,

where D2 =

y : yn√
1

n−1

n−1∑
i=1

y2i

> u

 .

Next, the variable change

yi = (n− 1)1/2rti for i ≤ n− 1,

yn = r, r > 0,

and applying Fubini’s theorem and recalling (2.5) leads to

P (Tn > u) =

∫
· · ·
∫

∑
t2i<u

−2

G(t)dt, (2.6)

where

G(t) = (n− 1)
n−1
2

∞∫
0

rn−1g
(
r
(
Id +Av(t)

))
dr,

and

v(t) = (n− 1)1/2
(
t1, t2, .., tn−1, 0

)
.

Continuity of g and (2.2) ensure that G is continuous at zero, by the
dominated convergence theorem, and Corollary 7.1.1 in Appendix
A completes the proof. �
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Assumption (2.1) ensures Kg > 0 and the condition (2.2) holds if,
for example, Kg <∞ and g is continuous and has the asymptotic
monotonicity property, see Lemma 7.2 in Appendix B.

Now consider the case when one of the assumptions (2.2) or
(2.1) is violated. If (2.2) holds and (2.1) is violated, then (2.4)
holds with Kg = 0, that is, the right tail of the distribution of Tn
is “strictly lighter” than the tail of the t−distribution with n−1 de-
grees of freedom. If, instead, (2.1) holds and (2.2) is violated, then,
Theorem 7.2 in Appendix B shows that the right tail of the distri-
bution of Tn is “at least as heavy as” Kgt(u), provided Kg < ∞,
and “strictly heavier” than tn−1(u) if Kg =∞.

Next, two corollaries. The first one concerns dependent Gaussian
vectors.

Corollary 2.1.1 (Gaussian zero-mean case). If X ∼MVN(0,Σ),
where Σ is a strictly positive-definite covariance matrix, then (2.4)
holds with

Kg =

(
IdΣITd

)n/2
|Σ|1/2

.

Proof. Deriving the expression for Kg in (2.3) is straightforward.
Furthermore, Kg <∞ since Σ is non-degenerate, and MVN(0,Σ)
has the asymptotic monotonicity property defined in Appendix B.
From Lemma 7.2 it then follows that the regularity constraint (2.2)
holds, and then so does (2.4). �

Now consider the effect of non-normality. Assume that the el-
ements Xi of the vector X are independent and identically dis-
tributed and let h(x) be their common marginal density, that is,
g(x) = h(x1)h(x2) · · ·h(xn).

Corollary 2.1.2 (i.i.d. case). If h(x) is continuous, and monotone
on [L,∞) for some finite constant L, then (2.4) holds with

Kg = 2
(πn)

n
2

Γ(n2 )

∞∫
0

rn−1h (r)n dr <∞.

Proof. The monotonicity of h(x) on [L,∞) implies that g(x) has
the asymptotic monotonicity property, see Appendix B, and the
regularity assumption (2.2) hence follows from finiteness of Kg and
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Lemma 7.2. The finiteness of Kg, in turn, follows if we show that
rh(r)→ 0 as r →∞.

Indeed, assume to the contrary that lim sup rh(r) > 0. Then
there exists δ > 0 and a sequence {rk}∞k=0 with r0 = L + 1 and
such that rk+1 > 2rk and rkh(rk) > δ for any k > 0. Now the
monotonicity of h(x) on [L,∞) gives

∞∫
L+1

h(r)dr ≥
∞∑
k=1

(rk − rk−1)h(rk) > δ

∞∑
k=1

rk − rk−1

rk
=∞,

contradicting that h(x) is a density. �

The constants Kg for some common densities h(x) are given in
Table 1 in Appendix C.

3 Two-sample t−test

In this section we study the tail of the distribution of the Student
two-sample t−statistic under non-standard conditions. However,
we first, consider a more general case. For n1 ≥ 2, n2 ≥ 2, set
n = n1 + n2 and let X = (X1, X2, .., Xn) be a random vector with
multivariate joint density g. Now let S1 and S2 denote the sample
variances of the vectors (X1, X2, .., Xn1) and (Xn1+1, Xn1+2, .., Xn)
and define

Tn =

1
n1

n1∑
i=1

Xi − 1
n2

n∑
i=n1+1

Xi√
αS2

1 + βS2
2

,

where α and β are some positive constants.

Our aim is to establish asymptotic expression for the probabil-
ity of high-level excursions P (Tn > u) as u → ∞. The constants
α and β will be specified later. Introduce the unit vectors

Id1 = (1/
√
n1, 1/

√
n1, .., 1/

√
n1, 0, 0, .., 0)

and
Id2 = (0, 0, .., 0, 1/

√
n2, 1/

√
n2, .., 1/

√
n2) ,

let ω0 = arccos
(√

n2
n

)
, and assume that

g
(
r
(

cos(ω − ω0)Id1 + sin(ω − ω0)Id2

))
> 0 (3.1)
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for some r ≥ 0 and ω ∈ [−π/2, π/2], and that

π/2∫
−π/2

cos(ω)n−2

∞∫
0

rn−1 ×

(3.2)

× sup
‖ξ‖<ε
ξ∈L⊥

g
(
r
(

cos(ω − ω0)Id1 + sin(ω − ω0)Id2 + ξ
))
drdω

is finite for some ε > 0, where L is a linear subspace of Rn spanned
by the vectors Id1 and Id2 and L⊥ is its orthogonal complement.
Next, define

Kg = C(n1, n2, α, β)

π/2∫
−π/2

cos(ω)n−2 × (3.3)

×
∞∫

0

rn−1g
(
r
(

cos(ω − ω0)Id1 + sin(ω − ω0)Id2

))
drdω,

where the constant C(n1, n2, α, β) is given by

C(n1, n2, α, β) =
2π

n−1
2

(
n1−1
α

)n1−1
2

(
n2−1
β

)n2−1
2
(

1
n1

+ 1
n2

)n−2
2

Γ
(
n−1

2

)
(n− 2)

n−2
2

.

Theorem 3.1. If g is continuous and satisfies (3.1) and (3.2),
then

P (Tn > u)

tn−2(u)
= Kg + o(1) as u→∞, (3.4)

where tn−2(u) is the tail of the t−distribution with n− 2 degrees of
freedom and 0 < Kg = K(g) <∞.

Proof. The proof is similar to the proof of Theorem 2.1. We start
with

P (Tn > u) =

∫
D1

g(x)dx,

where D1 = {x : Tn > u}. Let A be an orthogonal linear operator
such that

Aen1 = Id1 and Aen = Id2. (3.5)
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Changing coordinate system x = Ay gives

1

n1

n1∑
i=1

Xi =
1
√
n1
yn1 ,

1

n2

n∑
i=n1+1

Xi =
1
√
n2
yn,

S2
1 =

1

n1 − 1

n1−1∑
i=1

y2
i and S2

2 =
1

n2 − 1

n−1∑
i=n1+1

y2
i

and therefore

P (Tn > u) =

∫
D2

g(Ay)dy,

where D2 =

y :
1√
n1
yn1−

1√
n2
yn(

α
n1−1

n1−1∑
i=1

y2i+ β
n2−1

n−1∑
i=n1+1

y2i

)1/2 > u

 .

Next, define c1(ω) and c2(ω) by

c1(ω)√
1
n1

+ 1
n2

=

√
n1 − 1

α
cos(ω) and

c2(ω)√
1
n1

+ 1
n2

=

√
n2 − 1

β
cos(ω),

and introduce new variables t1, t2, .., tn−2, r, ω such that

yi = rc1(ω)ti for i = 1, 2, .., n1 − 1,

yi = rc2(ω)ti−1 for i = n1 + 1, n1 + 2, .., n− 1,

yn1 = r cos(ω − ω0) and yn = r sin(ω − ω0), r > 0.

The identity

1
√
n1

cos(ω − ω0)− 1
√
n2

sin(ω − ω0) =

√
1

n1
+

1

n2
cos(ω)

and Fubini’s theorem and (3.5) then give

P (Tn > u) =

∫
· · ·
∫

n−2∑
i=1

t2i<u
−2

G(t)dt, (3.6)

where

G(t) = M

π/2∫
−π/2

cos(ω)n−2

∞∫
0

rn−1 ×
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×g
(
r
(

cos(ω − ω0)Id1 + sin(ω − ω0)Id2 +Av(t, ω − ω0)
))
drdω

with

v(t, ω) =
(
c1(ω)t1, .., c1(ω)tn1−1, 0, c2(ω)tn1 , .., c2(ω)tn−2, 0

)
and

M =

(
n1 − 1

α

)n1−1
2
(
n2 − 1

β

)n2−1
2
(

1

n1
+

1

n2

)n−2
2

.

The finiteness of the integral in (3.2) and continuity of g imply
the continuity of G at zero by the dominated convergence theorem,
and Corollary 7.1.1 of Appendix A gives the asymptotic expression
(3.4) with the constant Kg defined in (3.3). �

The assumption (3.1) ensures that Kg > 0, and the regularity
constraint (3.2) can be verified directly, or using simpler criteria,
see Appendix B.

Corollary 3.1.1 (Gaussian zero-mean case). If X ∼MVN(0,Σ),
where Σ is a strictly positive-definite covariance matrix, then (3.4)
holds with

Kg = C(n1, n2, α, β)
Γ
(
n
2

)
2π

n
2 |Σ|1/2

π/2∫
−π/2

cos(ω)n−2(
v(ω)Σ−1v(ω)T

)n/2dω,
(3.7)

where
v(ω) = cos(ω − ω0)Id1 + sin(ω − ω0)Id2.

Proof. Let λ be the smallest eigenvalue of Σ−1. Note that λ > 0,
which implies that

g(x) ≤ 1

(2π)n/2|Σ|1/2
e−

λ
2
‖x‖2 <

1

‖x‖n+1

for ‖x‖ large enough. The above and Lemma 7.1 in Appendix B
ensure that (3.2) holds, and deriving Kg is a calculus exercise. �

The asymptotic expression for the probability of high level excur-
sions for the Student two-sample t−test is obtained by setting

α =
n1 − 1

n− 2

(
1

n1
+

1

n2

)
and β =

n2 − 1

n− 2

(
1

n1
+

1

n2

)
.
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For the Gaussian zero-mean case the expression (3.7) then reduces
to

Γ(n2 )

Γ(n−1
2 )
√
π|Σ|1/2

π/2∫
−π/2

cos(ω)n−2(
v(ω)Σ−1v(ω)T

)n/2dω. (3.8)

As expected, if Σ = σ2In (recall, In is the identity matrix) and
σ2 > 0, then direct calculation shows that Kg = 1. Now consider
the case when the population variances are unequal. Substituting
the diagonal matrix

Σ = diag{σ2
1, .., σ

2
1︸ ︷︷ ︸, σ2

2, .., σ
2
2︸ ︷︷ ︸}

n1 n2

into (3.8), the latter, after some lengthy algebraic manipulations,
takes form

Γ(n2 )n
n
2
−1

1 kn2

n
n−1
2 Γ(n−1

2 )
√
π

 1∫
−∞

(1− x)n−2

(1 + ck2x2)n/2
dx+

∞∫
1

(x− 1)n−2

(1 + ck2x2)n/2
dx

 ,
where k = σ1/σ2 and c = n2/n1. The integrals can be computed
by resolving the corresponding rational functions into partial frac-
tions (n is even) or by expanding brackets in the numerator and
integrating by parts (n is odd). We hence computed Kg for sample
sizes up to 5, see Table 2 in Appendix C.

Unfortunately there is no closed form expressions for (3.7) or
(3.8) for an arbitrary covariance matrix Σ. The same applies to the
i.i.d case, that is, when the vector X consists of the i.i.d. elements
Xi having a common continuous marginal density h(x). However,
in both cases the constant Kg may be computed numerically, see
Supplementary Materials. Note also that for odd sample sizes the
exact distribution of the Student two-sample t−statistic is known,
see Ray and Pitman (1961).

4 Welch’s test

In this section we consider the tails of the Welch statistic Tn and
discuss the accuracy of the approximation of Corollary 3.1.1 for
P (Tn > u) as u → ∞. For the rest of the section we assume
that the data is a Gaussian zero-mean vector, and the components
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are independent, and identically distributed within the two sam-
ples (X1, X2, .., Xn1) and (Xn1+1, Xn2+2, .., Xn) having population
variances σ2

1 and σ2
2 respectively.

Under the above assumptions Ray and Pitman (1961) showed
that for odd sample sizes n1 and n2 the exact distribution of the
Welch statistic Tn (also known as Fisher-Behrens-Welch or Welch-
Aspin statistic) is given by the weighted sum of t-distributions.
More precisely, formula (4.1) on page 380 of the cited reference
(we use the notation k instead of n) says that

ρTn(v) = (2π)−
1
2

{
m−1∑
r=0

αrΓ

(
r +

3

2

)(
1

2a
+
v2

2

)−(r+3/2)

+

(4.1)

+
k−1∑
r=0

βrΓ

(
r +

3

2

)(
1

2b
+
v2

2

)−(r+3/2)
}
,

where ρTn(v) is the p.d.f. of the Welch statistic Tn with odd sample
sizes n1 = 2m + 1 and n2 = 2k + 1. The constants a, b, αr and βr
depend on m, k, σ1 and σ2, and the constants αr and βr depend
also on r.

In the light of the asymptotic representation of Theorem 3.1,
the expression (4.1) for the exact density of Tn for odd sample
sizes may look suspicious, since ρTn(v) is a mixture of the Student
t−densities that have tails heavier than the tail of the Student
t−density t(u) in Theorem 3.1. A more detailed investigation,
however, revealed that α0 + β0 = 0, and the main terms in the
asymptotic expansion for the heaviest densities in (4.1) cancel out,
bringing in summands of higher order, which, in turn, may cancel
out the main terms of the asymptotic expansion of the next most
heavy summands (i.e. the ones that correspond to r = 1), and so
on.

We tested our theory for the case n1 = 3, n2 = 5 and σ2
1 = σ2

2

by computing the left-hand side of (3.4) using (4.1), see Figure
2, and also for other choices of n1 and n2 and for σ1 6= σ2, see
Supplementary Materials.
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Figure 2: Convergence in (3.4) for the Welch t−test with
sample sizes n1 = 3 and n2 = 5, variances equal.

Blue curve is the left-hand side of (3.4) computed using the exact density

of Welch’s statistic, see (4.1). Horizontal line is the constant Kg ≈ 1.68

computed from (3.7).

The figure above shows that the left-hand side of (3.4) converges
to the constant Kg. Recall that the latter is obtained by substitut-
ing α = 1/n1 and β = 1/n2 in (3.7). We also computed the first
10 terms in the Taylor series expansion for ρTn(u) and Kgt(u) as
u→∞, and found that the two expansions are in agreement with
each other, see Supplementary Materials.

The asymptotic expressions for the Welch test under non-normality
and dependence are obtained using the procedure similar to the one
employed in the derivation of the asymptotic expressions for the
Student two-sample t− test, see Section 3. We also study the ac-
curacy of the asymptotic approximations of Corollary 3.1.1 for the
Student two-sample t−test and Welch test using simulations, see
Section 7.

5 F−test

In this section we study the tails of an F -statistic for non-normal,
dependent, and/or non-stationary data. For the sake of simplicity
we proceed with the F -test of the equality of variances. The re-
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sults hold also for an F -test used in one-way ANOVA, lack-of-fit
sum of squares, and when comparing two nested linear models in
regression analysis. The exact form of the constant factors in the
asymptotic expressions for these tests can be derived in a similar
way. The formulation of the problem is follows.

Let X = (X1, X2, .., Xn1) and Y = (Y1, Y2, .., Yn2), n1 ≥ 2 and
n2 ≥ 2, be random vectors, and let g(x,y) be the joint density of
the vector (X,Y). Next, set n = n1 + n2 and define

Tn =
S2

1

S2
2

,

where S1 and S2 are the sample variances of X and Y respectively.
Let s1(x) denote the sample standard deviation of the vector x ∈
Rn1 and define the unit vector Id =

(
1/
√
n2, 1/

√
n2, .., 1/

√
n2

)
. We

assume that

s1(x) g
(
x, rId

)
> 0 (5.1)

for some x and r, and that the integral

∫
· · ·
∫

Rn1

s1(x)n2−1

∞∫
−∞

max
‖ξ‖<ε,
ξ∈L⊥

g
(
x, rId + s1(x)ξ

)
drdx (5.2)

is finite for some ε > 0, where L is a linear subspace spanned by
vector Id and L⊥ is its orthogonal complement. Finally, define the
constant

Kg =
Γ
(
n1−1

2

)
(π(n1 − 1))

n2−1
2

Γ
(
n−2

2

) ∫
· · ·
∫

Rn1

s1(x)n2−1

∞∫
−∞

g (x, rId) drdx.

(5.3)

Theorem 5.1. If g is continuous and satisfies (5.1) and (5.2),
then

P (Tn > u)

Fn1−1,n2−1(u)
= Kg + o(1) as u→∞, (5.4)

where Fn1−1,n2−1(u) is the tail of the F -distribution with parame-
ters n1 − 1 and n2 − 1 and 0 < Kg = K(g) <∞.
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Proof. The first part of the proof repeats the proofs of Theorems
2.1 and 3.1. Let A be an orthogonal linear operator defined on Rn2

such that Aen2 = Id. We have

P (Tn > u) =

∫
D

g(x, Ay)dxdy,

where D =

(x,y) :
s21(x)
n2−1∑
i=1

y2i

> 1
n2−1u

 .

Changing variables yi = (n2 − 1)1/2rs1(x)ti for 1 ≤ i < n2 and
yn2 = r (though, formally, we should have considered the case
r > 0 and r < 0 separately), we write

P (Tn > u) =

∫
· · ·
∫

n2−1∑
i=1

t2i<u
−1

G(t)dt, (5.5)

where

G(t) = (n2 − 1)
n2−1

2

∫
· · ·
∫

Rn1

s1(x)n2−1
∞∫
−∞

g
(
x, rId + s1(x)Av(t)

)
drdx

and

v(t) = (n2 − 1)1/2 (t1, t2, .., tn2−1, 0) .

Continuity of G at zero follows from the finiteness of integral (5.2)
and continuity of g by the dominated convergence theorem, and
Lemma 7.1 (A) of Appendix A implies that P (Tn > u) is asymp-
totically proportional to tn2−1(

√
u). It can be shown that

tn2−1(
√
u)

Fn1−1,n2−1(u)
=

Γ
(
n2
2

)
Γ
(
n1−1

2

)
(n1 − 1)

n2−1
2

2
√
πΓ
(
n−2

2

) + o(1) as u→∞,

and (5.4) and the expression for Kg in (5.3) follow. �

Corollary 5.1.1 (Gaussian zero-mean case, independent samples).
If X and Y are independent zero-mean Gaussian random vectors
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with strictly non-degenerate covariance matrices Σ1 and Σ2, then
(5.4) holds with

Kg = C

∫
· · ·
∫

Rn1

s1(x)n2−1(
1 + xΣ−1

1 xT
)n/2dx, (5.6)

where the constant C is given by

C =
(n− 2)(n1 − 1)

n2−1
2 Γ

(
n1−1

2

)
|IdΣ2I

T
d |1/2

2π
n1+1

2 |Σ1|1/2|Σ2|1/2
.

Proof. The regularity assumption (5.2) follows from Lemma 7.1
and the derivation of the constant Kg is a calculus exercise. �

An immediate consequence of the above is the expression for
the asymptotic power of the F−statistic.

Corollary 5.1.2 (Asymptotic Power). If X and Y are independent
zero-mean Gaussian random vectors with strictly non-degenerate
covariance matrices σ2

1In1 and σ2
2In2, then

lim
u→∞

P (Tn > u)

Fn1−1,n2−1(u)
=

(
σ1

σ2

)n2−1

. (5.7)

Proof. Changing variables x = σ1By, where B is an orthogonal
operator such that Ben1 =

(
1/
√
n1, 1/

√
n1, .., 1/

√
n1

)
, the integral

on the right-hand side of (5.6) takes form

σn−1
1

(
1

n1 − 1

)n2−1
2
∫
· · ·
∫

Rn1

(
‖y‖2 − y2

n1

)n2−1
2

(1 + ‖y‖2)n/2
dy,

which can be evaluated by passing to spherical coordinates. �

A careful reader may note that (5.7) follows from the equality

P (Tn > u) = Fn1−1,n2−1

(
(σ2/σ1)2u

)
and the asymptotic expansion for the right hand side of the above
in terms of Fn1−1,n2−1 (u). Our aim, however, was to show that
despite the complexity of the expression (5.3), the constant Kg

can be evaluated directly for some densities g.
It is often possible to compute Kg numerically, see the MAT-

LAB (2010) scripts in the Supplementary Materials section.
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6 Second and higher order approximations

In this section we give a brief note on the speed of convergence in
Theorem 1.1. First, consider the case H0 : g ∼ MVN(0, In), that
is, when the classical normal i.i.d. assumption holds and Kg0 = 1.

Let Tn be the Student one- or two- sample t−test or an F -
test of the equality of variances, and let tk(u) be the Student
t−distribution tail with k degrees of freedom and Fm,k(u) be the
F−distribution tail with parameters m and k. We assume that the
regularity assumptions (2.2), (3.2) and (5.2) hold, and let Kg be
the constant in (2.3), (3.3) and (5.3) for the three tests accordingly.
The function G(t) is given by (2.6), (3.6) and (5.5). Finally, with
the standard notation ∇f for the gradient of a scalar function f ,
and a parameter α which can take values 1 or 2, define

dα,m,k(u) =
1

u
α(k+1)

2

C1 sup
‖x‖≤u−

α
2

∥∥∇G(x)
∥∥+ C2

Kg

α

1

u
α
2

 (6.1)

where the constants C1, C2 (which depend on m and k) are given
in Lemma 7.1 (B) below.

Lemma 6.1 (Absolute error bound). If G(t) is differentiable in
some neighborhood of zero, then for any u > 0 the following in-
equalities hold

Student’s one-sample t−test:

|P (Tn > u)−Kg tn−1(u)| ≤ d2,1,n−1(u),

Student’s two-sample t−test:

|P (Tn > u)−Kg tn−2(u)| ≤ d2,1,n−2(u),

F−test:

|P (Tn > u)−Kg Fn1−1,n2−1(u)| ≤ d1,n1−1,n2−1(u).

Proof. For the F−test the statement follows from (5.5) and Lemma
7.1 (B) where we set α = 1 and replace u by

√
u. For the Student

one- and two- sample t−test we use the representations (2.4) and
(3.4) and Corollary 7.1.1. �
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Next, we recall the notation t(u) for the distribution tail of Tn
under H0 : g ∼ MVN(0, In) and derive the asymptotic formula
for the relative error.

Lemma 6.2 (Relative error decrease rate). If G(t) is twice differ-
entiable in some neighborhood of zero, then

P (Tn > u)−Kgt(u)

P (Tn > u)
=
C3

uα
(1 + o (1)),

where

C3 =
αkB

(
m
2 ,

k
2

)
2
(
k
m

)k/2 LGα
Kg

,

the triple (α,m, k) is set to (2, 1, n− 1), (2, 1, n− 2) and (1, n1, n2)
for the Student one- and two- sample t− and F− tests respectively,
and the constant LG is defined in Lemma 7.1 C).

Proof. The result is follows from the representations (2.4), (3.4)
and (5.4) for P (Tn > u), Lemma 7.1 C), and formula (7.7). �

The bounds and asymptotic expressions for the case of an arbitrary
null hypothesis H0 follow from basic calculus. Indeed,

P (Tn > u|H1)−Kg1

Kg0

P (Tn > u|H0) =
(
P (Tn > u|H1)−Kg1t(u)

)
−Kg1

Kg0

(
P (Tn > u|H0)−Kg0t(u)

)
,

and the absolute error of the approximation (1.1) is thus bounded
by the linear combination of the absolute errors, and we can now
apply Lemma 6.1. For the relative error - simply replace the prob-
abilities P (Tn > u|H1) and P (Tn > u|H0) by their second order
expansions given by Lemma 7.1 C) and use (7.7).

Note that Lemma 6.2 expresses the rate of decrease of the rel-
ative error RE(u) as u → ∞. In practice, however, it might be
desirable to look on the p-value scale. Take, for example, the Stu-
dent one-sample t−test based on n = 2 observations. Omitting
the o(1) term in Lemma 6.2 this means that RE(u) < 0.01C3 for
u > 10, or, equivalently, for t(u) < t1(10) ≈ 0.03. But if, instead,
one had n = 6 observations, and assuming that the constant C3

(which depends on n) did not change, similar precision would hold
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for p-values of at most t5(10) ≈ 0.00008. In this hypothetical ex-
ample, the conclusion is that the asymptotic formulas are more
accurate for small sample sizes. Such behavior was also observed
in the simulation study, see Section 7.

Lemma 7.1 can be generalized to obtain a series expansion for
the probability P (Tn > u) as u → ∞. However, formulating the
assumptions which would allow to interchange differentiation and
integration in the expressions for the coefficients is an open prob-
lem, see Appendix B.

7 Simulation study

In this section we study the accuracy of the asymptotic formulas
of Sections 2, 3, 4 and 5 using simulations. With the notation
Tn for the Student one- or two- sample t− or F− test, t(u) for
the distribution tail of Tn under H0 : g ∼ MVN(0, In), and Kg

for the corresponding asymptotic constant, consider the following
procedure:

1. Choose n1 and n2 (or simply n for the Student one-sample
t−test).

2. Specify the density g(x) of the data vector X.

3. Set the values of the integer parameters r and res (description
follows) and simulate N = r × res random vectors X ∼ g.

4. For each vector X compute t∗ = Tn(X), the value of the test
statistic Tn, and two p-values pR = t(t∗) and pC = Kg t(t

∗).

5. Plot the empirical CDF of pR and pC over the range [0, 1/r].

The Zoom Factor (Z.F.) parameter r determines the tail region
of interest: only p-values that fall in the interval I(r) = [0, 1/r]
are kept. The parameter res determines the desired number of
p-values out of N to fall in the interval I(r) as if the p-values were
uniformly distributed. For the present, we set res to 10, 000 - the
latter gives high accuracy in the approximation of the tails of the
distribution of pR and pC by the empirical CDF.

The letters “R” and “C” in the notation for the simulated p-
values stand for “Raw” (computed using t(u)) and “Corrected”
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(computed using Kgt(u)) accordingly. For the Welch test “Raw” p-
values are computed using the Welch-Satterthwaite approximation
and the notation is pWS .

Within the scope of the current study we consider only the i.i.d
case. Further, let h(x) be the marginal density of the vector X.
From now on h(x) is one of the following densities: Uniform(−1, 1),
Standard normal, Centered exponential, Cauchy or t− density with
2 or 5 degrees of freedom, and the values of the constant Kg are
computed numerically using MATLAB (2010). The scripts can be
found in the Supplementary Materials section.

The empirical CDF plots for the p-values pR and pC for the
Student one- and two- sample t− and F− tests, with different
sample sizes n, n1, and n2, and Zoom Factor r ranging from 20
to 1, 000, 000 are shown in Figures 3, 4 and 5 for the three tests
accordingly, see Appendix C.

The plots show that the asymptotic approximations perform
uniformly better in the tail regions for all the three tests and for
all the densities h(x) and sample sizes n, n1 and n2 considered in
the study.

The speed of convergence varies depending on the choice of the
sample size(s) and population density h(x). The two observations
are: 1) the convergence is faster for small sample sizes, and 2) the
convergence is faster for the case when the deviation of the distri-
bution tail of pR from the theoretical uniform distribution is small
(i.e. when Kg is not “too far” from 1). Both observations are in
agreement with the bounds for the absolute error in Lemma 6.1,
see Section 6.

The only plots which showed slow convergence speed were those
that correspond to the case of the Uniform population distribu-
tion for the Student one-sample t−test of sample size 5, and the
Uniform and Centered exponential densities for the Student two-
sample t−test of sample sizes n1 = 3 and n2 = 5. Note also that
for these cases the sample sizes and the values of the constant Kg

are larger compared to the other cases.

The convergence speed for the F−test of the equality of vari-
ances is, in fact, faster than for Student’s one- and two- sample
t−tests.
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For the Welch test we compared the asymptotic approximation
(3.7) of Corollary 3.1.1 with the Welch-Satterthwaite approxima-
tion. The latter suggests that the distribution of the Welch statistic
Tn should be approximated by the Student t−distribution with

ν =

(
S2
1
n1

+
S2
2
n2

)2

S4
1

n2
1(n1−1)

+
S4
2

n2
2(n2−1)

degrees of freedom, where ν is estimated from data.
Based on the full scale plots of Figure 6, the top row, one may

get an impression that the empirical CDF of the p-values pWS is in
agreement with the theoretical uniform distribution over the whole
range of values between 0 and 1. Such impression is, however, mis-
leading - this becomes clear as one “zooms in” to the tails of the
distribution of the p-values: the plots in the middle row of Figure 6
correspond to the tail region [0, 0.001], and one can see that the p-
values obtained using the Welch-Satterthwaite approximation de-
viate significantly from the theoretical uniform distribution. The
plot of the empirical CDF for the p-values pC , on the other hand,
almost coincides with the diagonal line. The advantage of using
the tail approximation is fully convincing at Zoom Factor 100 000,
see the bottom row of Figure 6 in Appendix C.

The simulation study can be extended to cover the case of de-
pendence and non-stationarity of the data. All the scripts used in
this section are available as a Supplementary material.

Appendix A: Asymptotic behavior of an inte-
gral of a continuous function over a shrinking
ball

In this Section we introduce the key lemma which is repeatedly
used in Sections 2, 3 and 5. It was shown that the probability
of high-level excursions for Student’s one-sample t−test, Student’s
two-sample t−test, Welch’s test and F−test is determined by the
asymptotic behavior of an integral of some function (different for
each of the tests) over a shrinking ball.
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Let G(x), x ∈ Rk be some real-valued function and consider the
asymptotic behavior of

F (u) =

∫
· · ·
∫

∑
x2i<u

−2

G(x) dx. (7.1)

The value of k is fixed and u→∞.

Lemma 7.1. Set f(u) = α−1Fm,k(u
2), where Fm,k(·) is the tail of

the F−distribution with m ≥ 1 and k ≥ 2 degrees of freedom, and
let Vol(Bk) be the volume of the unit k-ball Bk and B(x, y) be the
Beta function. The parameter α will be set later. With the above
notation we have:

(A) If G is continuous at zero, then

F (u)

f(u)
= KG,α + o(1) as u→∞, (7.2)

where

KG,α =
αkB

(
m
2 ,

k
2

)
2
(
k
m

)k/2 Vol(Bk)G(0). (7.3)

(B) If G is differentiable in some neighborhood of zero, then for
any u > 0

|F (u)−KG,α f(u)| ≤ C1

uk+1
sup

‖x‖≤u−1

∥∥∇G(x)
∥∥+ C2

KG,α

α

1

uk+2
,

(7.4)
where

C1 = Vol(Bk) and C2 =
k(k +m)

m(k + 2)

(
k
m

)k/2
B
(
m
2 ,

k
2

) , (7.5)

and ∇G(x) is a gradient of G evaluated at point x.

(C) If G is twice differentiable in some neighborhood of zero, then

uk+2 (F (u)−KG,α f(u)) = LG,α + o(1) as u→∞, (7.6)

where

LG,α = C1
tr (Hess (G(0)))

2(k + 2)
− C2

KG,α

α
,
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tr(A) is the trace of square matrix A, and Hess (G(x)) is the Hes-
sian matrix of G at point x. Constants C1 and C2 are given in
(7.5).

Proof. The first statement follows from the asymptotic expansion
for the F−distribution tail (derivation is straightforward)

f(u) =
2
(
k
m

)k/2
αkB

(
m
2 ,

k
2

) [ 1

uk
− k2(k +m)

2m(k + 2)

1

uk+2

]
+ o

(
1

uk+2

)
. (7.7)

Indeed, changing variables x = y/u we write

F (u) =

∫
· · ·
∫

∑
x2i<u

−2

G(x)dx =
1

uk

∫
· · ·
∫

Bk

G(y/u)dy. (7.8)

Continuity of G at zero implies uniform convergence G(y/u)
Bk
⇒

G(0), and thus

F (u) = Vol (Bk)G(0)
1

uk
(1 + o(1)). (7.9)

Dividing (7.9) by (7.7) we get that the value of KG in (7.2) coin-
cides with (7.3).

Now assume G is differentiable in some neighborhood of zero and
consider the Lagrange form of the Tailor expansion of G(y/u). The
latter and (7.8) give

|F (u)−KG,α f(u)| ≤ 1

uk

∣∣∣Vol (Bk)G(0)− ukKG,α f(u)
∣∣∣

+
1

uk+1

∣∣∣∣∣∣∣
∫
· · ·
∫

Bk

∇G
(
ξ(y)y

)
yTdy

∣∣∣∣∣∣∣ ,
(7.10)

where 0 ≤ ξ(y) ≤ 1/u. The second summand in the right-hand
side of the above inequality is bounded by

1

uk+1
Vol (Bk) sup

Bk

‖∇G(x/u)‖,
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and the bound for the remaining summand follows from (7.7),
where we note that f(u) is bounded by the two successive par-
tial sums in its alternated series (7.7) and that the factors before
Vol (Bk)G(0) in the expression for KG,α and before the square
brackets in (7.7) cancel out. The last step is to use formulas (7.3)
and (7.5) to express Vol (Bk)G(0) in terms of KG,α and C2.

We move on to the proof of (7.6). Taylor expansion for G(y/u)
yields

F (u) =
1

uk
Vol (Bk)G(0) +

+
1

uk+2

∫
· · ·
∫

Bk

yHess (G (0)) yT

2
dy + o

(
1

uk+2

)
,

where we took into account that the integral of the odd func-
tion ∇G(0)y over the ball Bk is zero. Neglecting odd terms in
yHess (G (0)) yT we have∫
· · ·
∫

Bk

yHess (G (0)) yTdy =
∑∫

· · ·
∫

Bk

∂2G(0)

∂2yi
y2
i dy

=

(∑ ∂2G(0)

∂2yi

)∫
· · ·
∫

Bk

∑
y2
i

k
dy = Vol (Bk)

tr(Hess(G(0))

k + 2
,

where the last integral was computed using spherical coordinates.
Substituting the second order Taylor expansion for F (u) and ex-
pression for f(u) in (7.7) into the left-hand side of (7.6) we get the
constant LG,α. �

Note that the expression α−1KG,α does not depend on α and thus
the right-hand side of (7.4) and (7.6) depends only on the integrand
G in (7.1) and parameters m and k.

Corollary 7.1.1. Let tk(u) be the Student t−distribution tail with
k degrees of freedom. If G is continuous at zero, then

F (u)

tk(u)
= KG,2 + o(1) as u→∞,

where KG,2 is given by (7.3) with m = 1. Statements (B) and (C)
also hold for f(u) = tk(u), provided m = 1 and α = 2.

Proof. Note that tk(u) = 1
2F1,k(u

2) and apply Lemma 7.1. �
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Appendix B: A note on the regularity con-
straints and the continuity assumption

The aim of this section is to replace the technical constraints (2.2),
(3.2) and (5.2) of Theorems 2.1, 3.1 and 5.1 by simpler criteria, and
to weaken the assumption of continuity of the multivariate density
g of the vector of data.

The key observation that provides better understanding of the
nature of the regularity constraints (2.2), (3.2) and (5.2) is that
the proofs of the theorems share a common part, which is to apply
Lemma 7.1 (A) or Corollary 7.1.1 to the representations (2.6), (3.6)
and (5.5), and then use dominated convergence theorem to show
that the corresponding function G(t) is continuous at zero. The
only purpose of the regularity constraints is to ensure that the
limiting and integration operations are interchangeable, and that
the limit constant Kg is finite. Note, however, that omitting the
regularity assumptions (2.2), (3.2) and (5.2) we immediately obtain

Theorem 7.2 (“liminf” analogue of Theorems 2.1, 3.1 and 5.1).
Let Tn be the Student one- or two-sample t−test or an F−test
and let t(u) be the distribution tail of Tn under the null hypothesis
H0 : g ∼ MVN(0, σ2In), where σ2 > 0 and In is the identity
matrix. If g is continuous, then

lim inf
u→∞

P (Tn > u)

t(u)
≥ Kg,

where the constant Kg is given by (2.3), (3.3) and (5.3) accord-
ingly, though it may be infinite.

Proof. The statement is a consequence of representations (2.6),
(3.6) and (5.5), Fatou’s lemma, and inequality analog of Lemma
7.1 (A) and Corollary 7.1.1. �

We now give the sufficient conditions for the regularity constraints
of Theorems 2.1, 3.1 and 5.1 to hold. These conditions, however,
are not necessary. One may expect that the statements of Theo-
rems 2.1, 3.1 and 5.1 hold when g is continuous and Kg is finite.
The proof or disproof of the latter claim is an open problem.
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Lemma 7.1. If g(x) is bounded and there exist positive constants
R, C and δ such that

g(x) ≤ C

‖x‖n+δ
for ‖x‖ > R, (7.11)

then the assumptions (2.2), (3.2) and (5.2) of Theorems 2.1, 3.1
and 5.1 hold.

Proof. The integrals in (2.2), (3.2) and (5.2) will be estimated by
partitioning the integration domain into several disjoint parts Di

and D∗j and considering the integrals over these sets separately.
For non-compact domains D∗j the integrand will be estimated from
above using the bound (7.11). The key task is of course to show
that these bounds are integrable. The integrability over the com-
pact domains Di follows from the fact that g(x) is bounded.

In the notation below let G(r), G(ω, r) and G(x, r) be the in-
tegrands in (2.2), (3.2) and (5.2) accordingly.

Student’s one-sample t−test : Set D1 = [0, R] and D∗1 = [R,∞].
Since Id and ξ are orthogonal and taking into account that ‖Id‖ = 1
we have

‖r (Id + ξ) ‖2 = r2(1 + ‖ξ‖2) ≥ r2,

and the bound (7.11) gives∫
D∗1

G(r)dr <

∞∫
R

C

r1+δ
dr <∞.

Student’s two-sample t−test : Setting

D1 = [−π/2, π/2]× [0, R] and D∗1 = [−π/2, π/2]× [R,∞]

and noting that Id1 , Id2 and ξ are mutually orthogonal we get

‖r
(

cos(ω − ω0)Id1 + sin(ω − ω0)Id2 + ξ
)
‖2 = r2(1 + ‖ξ‖2) ≥ r2,

where we used the fact that ‖Id1‖ = ‖Id2‖ = 1. Now the bound
(7.11) implies

∫
D∗1

G(ω, r)dr <

π/2∫
−π/2

cos(ω)n−2dω ×
∞∫
R

C

r1+δ
<∞.
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F−test : Consider the following partition of Rn1+1:

D1 =
{

(x, r) : ‖x‖ ≤ R , |r| ≤ R
}
,

D∗1 =
{

(x, r) : ‖x‖ ≤ R , |r| > R
}

D∗2 =
{

(x, r) : ‖x‖ > R
}
.

Since Id and ξ are orthogonal and ‖Id‖ = 1 we have

‖ (x, rId + s1(x)ξ) ‖2 = ‖x‖2 + r2 + s1(x)2‖ξ‖2 ≥ ‖x‖2 + r2.

Then∫
· · ·
∫

D∗1

G(x, r)drdx <

∫
· · ·
∫

‖x‖≤R

s1(x)n2−1dx ×
∫
|r|>R

C

|r|n+δ
dr <∞

and∫
· · ·
∫

D∗2

G(x, r)drdx <

∫
· · ·
∫

‖x‖>R

∞∫
−∞

s1(x)n2−1

(‖x‖2 + r2)
n+δ
2

drdx <

<

∫
· · ·
∫

‖x‖>R

s1(x)n2−1

‖x‖n−1+δ
dx ×

∞∫
−∞

1

(1 + r2)n/2
dr <∞,

where the multidimensional integral in the last inequality is com-
puted by means of passing to spherical coordinates. �

Note that in the i.i.d case (7.11) is equivalent to the existence of the
n−1+δ moment of the marginal density h(x). For the Student one-
sample t−test, however, the criterium of Lemma 7.1 is “too strict”.

Definition. We say that the multivariate density g(x) has the
asymptotic monotonicity property if there exists a constant M such
that for any 1 ≤ i ≤ n and constants cj , j 6= i, the function
f(x) = g(c1, c2, .., ci−1, x, ci+1, .., cn) is monotone on [M , ∞).

Lemma 7.2. If Kg is finite and g(x) is bounded and has the
asymptotic monotonicity property, then the assumption (2.2) holds.
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Proof. Setting ε equal to (2
√
n)−1 and using asymptotic mono-

tonicity property we get that the integral in (2.2) is bounded by

2M
√
n∫

0

rn−1 sup
‖ξ‖< 1

2
√
n

g
(
r (I + ξ)

)
dr +

∞∫
2M
√
n

rn−1g

(
r
I

2

)
dr <∞.

The first summand is finite owing to the boundness of g and the
finiteness of the second summand is equivalent to the finiteness of
Kg. �

Now consider for a moment the i.i.d case of the Student one-sample
t−test. Lemma 7.2 shows that the statement of Theorem 2.1 holds
for any continuous marginal density h(x) that has monotone tails
and such that Kg <∞. The latter assumption, however, is weaker
than the assumption of existence of the first moment and holds
even for such heavy tailed densities as Cauchy. As we can see,
asymptotic monotonicity and finiteness of Kg is a very mild con-
straint, at least from the practical point of view.

Unfortunately, due to the geometrical considerations, there is
no asymptotic monotonicity criterium analogue for the case of the
Student two-sample t−test and F−test, and the constant Kg in
(3.3) and (5.3) may be infinite for some heavy-tailed densities.

Finally, note that in the proofs of Theorems 2.1, 3.1 and 5.1
we may have used the “almost everywhere” version of the dom-
inated convergence theorem. For the Student one-sample t−test
this means that the assumption of continuity of g in the corre-
sponding theorems can be replaced by the assumption that g(x) is
continuous a.e. on the set of points

x = rId, r > 0,

for the Student two-sample t−test - on the set of points

x = r
(
cos(ω − ω0)Id1 + sin(ω − ω0)Id2 + z

)
,

where r > 0 and ω ∈ [−π/2 , π/2], and for the F−test - on the set
of points

x = Rn1 × rId, r ∈ R.
Here a.e. means almost everywhere with respect to the Lebesque
measure induced by the d-dimensional Lebesque measure of the
linear space L in (2.2), (3.2) and (5.2), where d = dim(L). Con-
tinuous means continuous as a function of x ∈ Rn.

Copyright c© 2011 by Dmitrii Zholud
www.zholud.com 100 md5 hash:

7B0B4906E175DBA0F2C4901E199E418D

http://www.zholud.com


Extremes of some popular statistical tests under non-normality

Appendix C: Tables and figures

Table 1: The constantsKg for the i.i.d case of the Student one-

sample t−test. Here Γ(x), B(x) andM(a, b, x) are the Gamma,

Beta and Kummer confluent hypergeometric function, see e.g.

Polyanin and Manzhirov (2008) and Hayek (2001).

Density / Constant Kg

Normal with mean µ 6= 0 and standard deviation σ > 0

M
(

1−n
2 , 1

2 ,−
nµ2

2σ2

)
+ µ

σ

√
2nΓ( 1+n

2 )
Γ(n2 )

M
(

1− n
2 ,

3
2 ,−

nµ2

2σ2

)

Half-normal, and log-normal derived from a N(µ, σ2)

2n and n
n−1
2
√
π

2
n−3
2 σn−1Γ(n2 )

χ with ν > 0, and χ2 (and its inverse) with ν ≥ 2 d.f.

2nπn/2Γ(nν2 )
n
n
2 (ν−1)Γ( ν2 )

n
Γ(n2 )

and
2πn/2Γ(nν2 )

n
n
2 (ν−1)Γ( ν2 )

n
Γ(n2 )

F with µ > 0 and ν > 0 degrees of freedom

2(πn)n/2Γ(µn2 )Γ( νn2 )Γ(µ+ν2 )
n

Γ(n2 )[Γ(µ2 )Γ( ν2 )]
n

Γ(µ+ν2 n)

T with ν > 0 d.f. and Cauchy

nn/2Γ( νn2 )
Γ
(

(ν+1)n
2

) (Γ( ν+1
2 )

Γ( ν2 )

)n
and nn/2

2n−1π
n−1
2 Γ(n+1

2 )

Beta with shape parameters α > 1 and β > 1

2(πn)n/2Γ(αn)Γ(1+(β−1)n)
B(α,β)nΓ(n2 )Γ(1+(α+β−1)n)
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Gamma (and its inverse) with shape α > 1

2n
n
2 (1−2α)πn/2Γ(αn)

Γ(α)nΓ(n2 )

Uniform on interval [a, b], b > 0

(πn)
n
2

Γ(n2 +1)


(

b
b−a

)n
0 ∈ [a, b]

bn−an
(b−a)n [a, b] ⊂ [0,∞)

Centered exponential and exponential

2(πn)
n/2

Γ(n)

enΓ(n2 )
and

2(πn)
n/2

Γ(n)

Γ(n2 )

Maxwell, and Pareto with k > 0 and scale α > 0

( 4
n)

n
Γ( 3n

2 )
Γ(n2 )

and (πn)n/2αn−1

Γ(n2 +1)

Table 2: Constants Kg for the Student two-sample t−test,

variances unequal.

n2\n1 n1 = 2 n1 = 3 n1 = 4 n1 = 5

n2 = 2 k2+1
2k

(2k2+3)
3/2

5
√

5k2
(k2+2)

2

9k3
(2k2+5)

5/2

49
√

7k4

n2 = 3
(3k2+2)

3/2

5
√

5k

(k2+1)
2

4k2
(3k2+4)

5/2

49
√

7k3
(3k2+5)

3

512k4

n2 = 4
(2k2+1)

2

9k
(4k2+3)

5/2

49
√

7k2
(k2+1)

3

8k3
(4k2+5)

7/2

2187k4

n2 = 5
(5k2+2)

5/2

49
√

7k

(5k2+3)
3

512k2
(5k2+4)

7/2

2187k3
(k2+1)

4

16k4
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Student’s one-sample t−test
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Figure 3: The eCDF of the p-values for the Student one-
sample t−test.

The empirical CDFs of the raw and corrected p-values pR and pC are

shown in black and red accordingly. The top, middle and bottom rows

correspond to the Uniform(−1, 1), Centered exponential and Cauchy

densities, and left, middle and right columns correspond to sample sizes

n = 2, n = 3 and n = 5. The blue diagonal line is the theoretical uniform

distribution. The axes are scaled according to the Zoom Factor (Z.F.)

parameter r in the title of the graphs.
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Student’s two-sample t−test
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Figure 4: The eCDF of the p-values for the Student two-
sample t−test.

The empirical CDFs of the raw and corrected p-values pR and pC are

shown in black and red accordingly. The top, middle and bottom rows

correspond to the Uniform(−1, 1), Exponential and t2 densities, and

left, middle and right columns correspond to sample sizes (n1 = 2, n2 =

2), (n1 = 2, n2 = 3) and (n1 = 3, n2 = 5). The blue diagonal line is the

theoretical uniform distribution. The axes are scaled according to the

Zoom Factor (Z.F.) parameter r in the title of the graphs.
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F−test
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Figure 5: The eCDF of the p-values for an F−test of the
equality of variances.

The empirical CDFs of the raw and corrected p-values pR and pC are

shown in black and red accordingly. The top, middle and bottom rows

correspond to the Uniform(−1, 1), Exponential and t5 densities, and

left, middle and right columns correspond to sample sizes (n1 = 2, n2 =

2), (n1 = 2, n2 = 3) and (n1 = 3, n2 = 5). The blue diagonal line is the

theoretical uniform distribution. The axes are scaled according to the

Zoom Factor (Z.F.) parameter r in the title of the graphs.
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Welch’s test
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Figure 6: The distribution tails of the p-values for the
Welch test.

The empirical CDFs of the raw (Welch-Satterthwaite) and corrected p-

values pR and pWS for the Standard normal density are shown in black

and red accordingly. The top, middle and bottom rows correspond to

the different values of the Zoom Factor (Z.F.) parameter r shown on the

right, and the axes are scaled accordingly. The left, middle and right

columns correspond to sample sizes (n1 = 2, n2 = 2), (n1 = 2, n2 = 3)

and (n1 = 3, n2 = 5). The blue diagonal line is the theoretical uniform

distribution.
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Supplementary Materials

MATLAB scripts

[OST/TST/WELCH /F ]+ComputeKg.m - compute Kg numeri-
cally for the Student one- and two- sample t−, Welch, and F−
statistics using adaptive Simpson or Lobatto quadratures. Here g
is an arbitrary multivariate density.1

[OST/TST/WELCH /F ]+ComputeKg+[IS/IID]+.m - the same as
above but for the case of independent samples and i.i.d. random
variables accordingly.2

Wolfram Mathematica scripts

[OST/TST/WELCH /F ]+ComputeKg.nb - compute the exact ex-
pression for Kg for an arbitrary multivariate density g and given
sample size(s). The scripts include a number of instructive exam-
ples, including evaluation of Kg for the zero-mean Gaussian case
with an arbitrary covariance matrix Σ (and the “unequal vari-
ances” case for the Student two-sample t− and Welch tests) and
for the densities considered in the simulation study of Section 7.

OSTComputeKgIID.nb - verifies the constants in Table 1 for the
i.i.d. case of the Student one-sample t−statistic.

TSTExactPDF.nb and WELCHExactPDF.nb - the exact distribu-
tion for the Student two-sample t− and Welch statistics for odd
sample sizes, see Ray and Pitman (1961), and Figure 2 of Section
4 for the case σ2

1 6= σ2
2.

The scripts are available at www.zholud.com

1For the F−test we use Monte Carlo integration.
2For the F−test and n1 > 3 we use Monte Carlo integration.
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Extremes of the Shepp statistic for a

Gaussian random walk

Dmitrii Zholud ∗

Abstract

Let (ξi, i ≥ 1) be a sequence of independent standard nor-

mal random variables and let Sk =
k∑

i=1

ξi be the correspond-

ing random walk. We study the renormalized Shepp statistic

M
(N)
T = 1√

N
max

1≤k≤TN
max

1≤L≤N
(Sk+L−1 − Sk−1) and determine

asymptotic expressions for the probability P
(
M

(N)
T > u

)
when u,N and T → ∞ in a synchronized way. There are

three types of relations between u and N that give different

asymptotic behavior. For these three cases we establish the

limiting Gumbel distribution of M
(N)
T when T,N →∞ and

present corresponding normalization sequences.

Keywords Gaussian random walk, increments, maximum, extreme val-

ues, high excursions, large deviations, moderate deviations, asymptotic
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weak theorems, Wiener Process.
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1 Introduction

Let (ξi, i ≥ 1) be a sequence of independent standard normal ran-

dom variables, and let Sk =
k∑
i=1

ξi, with S0 = 0, be the correspond-

ing random walk. Introduce the Shepp and the closely related
Erdös-Rényi statistics

WN,L = max
1≤l≤L

TN,l and TN,L = max
1≤k≤N

Sk+L−1 − Sk−1,

and define

ζ
(N)
L (k) =

1√
N

(Sk+L−1 − Sk−1) =
1√
N

k+L−1∑
i=k

ξi.

We study the asymptotic behavior of the probability

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
(1.1)

when u → ∞, N → ∞ in a coordinated way. In fact, (1.1) is
the probability of exceeding the level u

√
N by the Shepp statis-

tic WTN,N . Related problems were described in Erdös and Rényi
(1970), Piterbarg (1991), Kozlov (2004) and Piterbarg and Kozlov
(2002). Paper Piterbarg (1991) presents the asymptotic behavior of
the probability of moderate deviations for the Erdös-Rényi statistic
under the assumption of sub-gaussian distribution of random walk
step and papers Kozlov (2004) and Piterbarg and Kozlov (2002)
study large deviations of the Erdös-Rényi and Shepp statistics for
Cramér random walk. To get the full picture of all possible cases
of asymptotic behavior of (1.1) we reformulate the result obtained

by A.M. Kozlov in Kozlov (2004). Let ψ(u) = 1√
2π

∞∫
u
e−x

2/2dx be

the tail of standard normal distribution and introduce the finite
positive constant

Jθ = lim
l→∞

1

θl
Eexp

{
θ max

0≤n<l
(
√

2Sn − θn)

}
.

Theorem 1.1 (A.M. Kozlov). Assume u→∞, N →∞, u√
N
→ θ,

where 0 < θ <∞. If Tu2ψ(u)→ 0 and Tu2 →∞, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ JθTu2ψ(u).
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The present paper extends this result to moderate and excessively
large deviations. For comparison and ease of reference we also
restate the main result of Zholud (2008) which deals with the con-
tinuous time case and is crucial in proving the asymptotic formula
for the case of moderate deviations. Let W (·) be the standard
Brownian motion.

Theorem 1.2 (D. Zholud). Assume u→∞. If Tu2 →∞ and
Tu2ψ(u)→ 0, then

P

(
max
0≤t≤T
0≤s≤1

(W (t+ s)−W (t)) > u

)
= HTu2ψ(u)(1 + o(1)),

where the constant

H = lim
B→∞

lim
A→∞

A−1e−
A+B

2 E exp

(
max
0≤t≤A
0≤s≤B

(W (t+ s+A)−W (t))

)

is finite and positive.

The case of moderate deviations (i.e. u√
N
→ 0 when u → ∞) is

intermediate between Theorem 1.1 and Theorem 1.2.

Theorem 1.3. Assume u→∞, N →∞, u√
N
→ 0. If Tu2 →∞

and Tu2ψ(u)→ 0, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ HTu2ψ(u).

Indeed, this asymptotic behavior is different from the one in The-
orem 1.1 in the constant multiplier and coincides with the asymp-
totic behavior for the case of continuous time, Theorem 1.2. The
proof of Theorem 1.3 can be found in Section 2.

A further comment is that if N → ∞ and u is fixed, then we
could apply weak convergence of a random walk to the Wiener pro-
cess, and the probabilities in Theorem 1.2 and Theorem 1.3 would
coincide. However Section 3 shows that just applying weak con-
vergence under the probability sign leads to incorrect results, and
that the rigorous and somewhat technical proof of Theorem 1.3 is
indeed needed. The main result of this section is as follows.
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Theorem 1.4. Assume u → ∞, N → ∞, u√
N
→ ∞. If TN ≥ 1

and TNψ(u)→ 0, then

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
∼ [TN ]ψ(u).

This theorem completes full description of the possible asymptotic
behavior of (1.1) under various relations between u and N .

Finally, using the results of Sections 2 and 3 we obtain limit

Gumbel distribution for M
(N)
T when T,N → ∞. If one of the

following relations holds,

1)
2 lnT

N
→ 0. 2)

2 lnT

N
→ θ2 > 0. 3)

2 lnT

N
→∞,

then, there exist functions aT and bT such that for any fixed x

P

(
max

0<k≤TN
0<L≤N

aT (ζ
(N)
L (k)− bT ) ≤ x

)
= e−e

−x
+ o(1).

The corresponding theorems and normalizing constants can be
found in Section 4. A similar result for standardized increments of
Gaussian random walk is obtained in Kabluchko (2007).

There is also extensive literature on a.s. convergence of related
quantities, see e.g. Shepp (1964), Erdös and Rényi (1970) and
Frolov (2004).

2 Moderate deviations of the Shepp statis-
tic

In this section we prove Theorem 1.3. That is we find the asymp-
totic behavior of the probability (1.1) when u→∞ and u/

√
N →

0. It will be shown that it coincides with the asymptotic behavior
for continuous time case, given in Theorem 1.2. The idea of the
proof is similar to Zholud (2008) and we divide it into two main
parts.

First, for any positive constant B we will focus on the asymp-

totic behavior of maximum of ζ
(N)
L (k) over a thin layer

{(k, L) : 0 < k ≤ TN, (1−Bu−2)N < L ≤ N}.
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Within this area and for large u, ζ
(N)
L (k) behaves approximately

like ζ
(N)
N (k), and it will be shown that it is possible to determine the

asymptotic behavior using similar techniques as used for stationary
process in Piterbarg (1991).

Second, knowing the asymptotic behavior of maximum of the

random variable ζ
(N)
L (k) over the area of its maximum variance, we

will show that the maximum over the complementary set {(k, L) :
0 < k ≤ TN, 0 < L ≤ (1− Bu−2)N} gives a neglible contribution
to the probability in (1.1).

The proof of the first part is based on the Double Sum Method.
The lemma below is the analog of Lemma 2.1 in Zholud (2008).
Let A and B be positive constants and set p = Au−2, q = Bu−2.
By A0(u) we refer to the set of pairs (k, L) ∈ [0, pN ]×((1−q)N,N ],
where k and L are positive integers.

Lemma 2.1. Let u→∞. Then

P

(
max
A0(u)

ζ
(N)
L (k) > u

)
= HB

A

1√
2πu

e−
u2

2 (1 + o(1)), (2.1)

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
.

Proof. Let [x] denote the integer part of x. We have

max
A0(u)

ζ
(N)
L (k) = max

A0(u)

1√
N

[k+L−1]∑
i=k

ξi

= 1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
A0(u)

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−q)N ]+1

ξi

)
.

The L+ [pN ]− [(1− q)N ] random variables in the sums inside the
“max” sign are independent of the variables in the sum outside
the “max” sign. We renumber the variables inside the maximum
sign and denote them by ξ

′
i. Thus,
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P

(
max
A0(u)

ζ
(N)
L (k) > u

)

= P

(
1√
N

[(1−q)N ]∑
i=[pN ]+1

ξi + max
0<k≤pN
0<L≤qN

1√
N

k+L+[pN ]−1∑
i=k

ξ
′
i > u

)

=
∞∫
−∞

e
− v2

2σ2√
2πσ2

P

(
max

0<k≤pN
0<L≤qN

1√
N

(S′k+L+[pN ]−1 − S
′
k−1) > u− v

)
dv,

where σ2 = [(1−q)N ]−[pN ]
N and S′k =

k∑
i=1

ξ
′
i with S′0 = 0.

For the sake of briefness introduce

M(k, L) = max
0<k≤pN
0<L≤qN

1√
pN

(S′k+L+[pN ]−1 − S
′
k−1).

Using the change of variables v = u −
√
Aw
u , and recalling that

u
√
p =
√
A, the probability in question is seen to equal to

√
A√

2πσ2u

∞∫
−∞

e−
(u−
√
Aw/u)2

2σ2 P (M(k, L) > w) ds

=
√
A√

2πσ2u
e−

u2

2σ2

∞∫
−∞

e−
Aw2/u2

2σ2 e
√
Aw
σ2 P (M(k, L) > w) dw. (2.2)

By weak convergence of a random walk to the Wiener process,
for any w,

lim
pN→∞

P (M(k, L) > w) = P

(
max
0≤t≤1

0≤s≤B/A

W (t+ s+ 1)−W (t) > w

)
,

where W (·) is the standard Wiener process; using Lemma 1 Piter-
barg (1991) it is straightforward to show that

P (M(k, L) > w) ≤ 2e−
w2

24 .

Thus, by dominated convergence

∞∫
−∞

e−
Aw2/u2

2σ2 e
√
Aw
σ2 P (M(k, L) > w) dw
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=
∞∫
−∞

e
√
AwP

(
max
0≤t≤1

0≤s≤B/A

(W (t+ s+ 1)−W (t)) > w

)
dw + o(1)

= 1√
A

E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
+ o(1).

Finally, since σ2 = 1 − p − q + o(u−2) the factor in front of the
integral (2.2) is equal to

√
A√

2πu
e−

u2

2
(1+p+q+o(u−2)(1+o(1)) =

1√
2πu

e−
u2

2

√
Ae−

A+B
2 (1+o(1))

and we obtain (2.1). �

Our next aim is to consider the layer [0, TN ] × ((1− q)N,N ].
We use Lemma 2.1 and the Bonferroni inequality to obtain esti-
mates of the probability of high level excursions of the maximum

of ζ
(N)
L (k). Then we will show that estimates from below and from

above are asymptotically equivalent.

Define ∆k(u) = {kpN + 1, ..., (k + 1)pN} × {(1− q)N + 1, ..., N}.
For ease of notation we suppress dependence on u and assume that

pN and qN are integers. Using stationarity of ζ
(N)
L (k) with respect

to k, we obtain that

(Tp−1 + 1)P

(
max
∆0

ζ
(N)
L (k) > u

)
≥ P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)

≥ (Tp−1 − 1)P

(
max
∆0

ζ
(N)
L (k) > u

)

−
∑

0≤l,m≤Tp−1+1
l6=m

P

(
max

∆l

ζ
(N)
L (k) > u,max

∆m

ζ
(N)
L (k) > u

)
.

Let pl,m denote the summands in the last sum. This sum, due
to stationarity, does not exceed

2(Tp−1 + 1)

Tp−1+1∑
n=1

p0,n.
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Estimating the probabilities p0,n from above we will show that the
double sum is negligible, and thus the upper and lower estimates
in the Bonferroni inequality are asymptotically equivalent. The
estimates of p0,n are obtained in the same manner as in Piterbarg
(1991). The proof will be divided into four parts.

Case 1.1: 1 ≤ n < n0. The value of n0 will be chosen later.
We have:

p0,n ≤ P

 max
0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u, max

pN(n+1)/2<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u



= 2P

 max
0<k≤pN(n+1)/2
(1−q)N<L≤N

ζ
(N)
L (k) > u

−P

 max
0<k≤pN(n+1)
(1−q)N<L≤N

ζ
(N)
L (k) > u

 .

Applying Lemma 2.1 we obtain that

p0,n ≤
1√
2πu

(2HB
A(n+1)/2 −H

B
A(n+1))e

−u
2

2 (1 + gn(u,N)), (2.3)

where gn(u,N)→ 0.

Case 1.2: n0 ≤ n ≤ εp−1 − 1. The value of ε will be cho-
sen later. First, introduce random variables

η = 1√
N

(1−q)N∑
i=(n+1)pN+1

ξi, ζ1 = 1√
N

npN∑
i=pN+1

ξi, ζ2 = 1√
N

npN+(1−q)N∑
i=pN+N+1

ξi.

Then, postponing the explanation of the last equality,

p0,n = P

(
η + ζ1 + max

∆0

1√
N

(
pN∑
i=k

+
(n+1)pN∑
i=npN+1

+
k+L−1∑

i=(1−p)N+1

)
ξi > u,

η + ζ2 + max
∆n

1√
N

(
(n+1)pN∑
i=k

+
pN+N∑

i=(1−q)N+1

+
k+L−1∑

i=npN+(1−q)N+1

)
ξi > u

)

= P

(
η + ζ1 + max

∆0

ζ
′
L(k) > u, η + ζ2 + max

∆0

ζ
′′
L(k) > u

)
,
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where

ζ
′
L(k) =

1√
N

k+L−(1−q−2p)N−1∑
i=k

ξ
′
i


and

ζ
′′
L(k) =

1√
N

k+L−(1−2q−2p)N−1∑
i=k

ξ
′′
i

 . (2.4)

The main idea of this representation is that we consider ζ
(N)
L (k)

for all possible pairs (k, L) ∈ ∆0 and “extract” the common sum-
mand η + ζ1. Analogously, for each (k, L) ∈ ∆n we “extract” the

summand η + ζ2. These summands are always present in ζ
(N)
L (k)

when k, L are within the corresponding sets. It is easy to check
that for ε < 1/2 and u large, the restriction on n ensures that
the variables η, ζ1, ζ2 are independent. By construction they are
also independent of the variables that remain inside the maximum
signs. The latter are renumbered and called ξ′i and ξ′′i in such a
way that (2.4) holds. Although ξ′i and ξ′′j may denote the same
r.v. ξr, in our case the dependence between ζ ′L(k) and ζ ′′L(k) does
not matter. What is essential is that η, ζ1, ζ2, are independent of
ζ ′L(k) and of ζ ′′L(k). For the sake of brevity we omit the arguments
for ζ ′L(k) and ζ ′′L(k), as well as the set over which the maximum is
taken.

From (2.4) it follows that

p0,n ≤ P (2η + ζ1 + ζ2 + max ζ ′ + max ζ ′′ > 2u)

= 1√
2πσ2

∞∫
−∞

P
(
ζ1+ ζ2

2 + max ζ′+ max ζ′′

2 > u− v
)
e−

v2

2σ2 dv,

where σ2 now is equal to [(1−q)N ]−[(n+1)pN ]
N . After the change of

variables v = u−√ps we get that

p0,n ≤
√
A√

2πσ2u
e−

u2

2σ2

∞∫
−∞

P
(
ζ1+ ζ2

2
√
p + max ζ′+ max ζ′′

2
√
p > s

)
e
√
As
σ2 ds

= σ√
2πu

e−
u2

2σ2 Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

+max ζ′+ max ζ′′
2
√
p

)
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= σ√
2πu

e−
u2

2σ2 Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

)
Ee

√
A
σ2

(
max ζ′+ max ζ′′

2
√
p

)
. (2.5)

We now estimate the three factors that form the bound for p0,n.
Since σ2 = 1 − q − (n + 1)p + o(u−2), for sufficiently large u the
factor in front of the expectation is bounded by

σ√
2πu

e−
u2

2σ2 ≤ 2√
2πu

e−
u2

2 e−
A(n+1)+B

2 .

Next, since random variable ζ1+ζ2
2
√
p is normally distributed, has zero

mean and its variance is less than (n− 1)/2 we have

Ee

√
A
σ2

(
ζ1+ ζ2
2
√
p

)
≤ e

A(n−1)

4σ4 .

In order to estimate the remaining expectation we will require an
estimate of the probability

P

(
max ζ ′ + max ζ ′′

2
√
p

> s

)
, s > 0.

According to notation in (2.4) and denoting S
′′
k =

k∑
i=1

ξ
′′
i we see

that the latter equals

P

(
max
∆0

(
S
′

k+L−(1−q−2p)N−1 − S
′
k−1

)
+

+ max
∆0

(
S
′′

k+L−(1−2q−2p)N−1 − S
′′
k−1

)
> 2
√
pNs

)
≤ P

(
max
∆0

S
′

k+L+(q+2p)N−N−1 + max
0<k≤pN

−S′k−1+

+ max
∆0

S
′′

k+L+(2q+2p)N−N−1 + max
0<k≤pN

−S′′k−1 > 2
√
pNs

)
≤ 4P

(
max

0<k≤(2q+3p)N
S
′
k >

√
pN
2 s

)
≤ 4e−

1
8( A

3A+2B
s2) < 4e−

s2

24 ,

(2.6)

where we applied Lemma 1 Piterbarg (1991) in the second to the
last step.

Thus, for any positive t we obtain the following estimate
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Ee
t
(

max ζ′+ max ζ′′
2
√
p

)
=
∞∫
−∞

tetsP
(

max ζ
′
+max ζ

′′

2
√
p > s

)
ds

≤ 1+4t
∞∫
0

ets−
s2

24 ds ≤ 1+4
√

24πte6t2 . (2.7)

Then we put t =
√
A
σ2 and when A is large, the estimate (2.7)

gives

Ee

√
A
σ2

(
max ζ′+ max ζ′′

2
√
p

)
<

8
√

24π

σ2

√
Ae

6A
σ4 .

We are now ready to estimate p0,n. Gathering the estimates of the
factors in (2.5) we get

p0,n ≤
16
√

24π
σ2

√
A

√
2πu

e−
u2

2 e
−An

(
1
2
− 1

4σ4

)
+A
(

23
4σ4
− 1

2

)
−B

2 .

Owing to the restriction n0 ≤ n ≤ εp−1 − 1 we have

σ2 = 1− q − (n+ 1)p+ o(u−2) > 1− 2ε.

Choosing ε such that 4(1− 2ε)2 = 3 we conclude that

p0,n ≤
C1

√
A√

2πu
e−

u2

2 e−A
n−43

6
−B

2 , (2.8)

where C1 is some positive constant.

Case 1.3: εp−1 ≤ n ≤ p−1 + 1. In much the same way the
representation (2.4) gives

p0,n ≤ P

(
2η + ζ1 + ζ2 + max

∆0

ζ ′L(k) + max
∆0

ζ ′′L(k) > 2u

)
.

However, when n ≥ εp−1, it may turn out that the sum in the
expression for η is empty. In this case we set η = 0. We should
also change the upper limit of summation in the definition of ζ1 to
min{npN, (1 − p)N}, and the lower limit of summation for ζ2 to
max{2pN + (1 − p)N + 1, (n + 1)pN + 1}. Therefore, ζ ′ and ζ ′′,
may consist of a smaller number of summands.

For any positive t, multiplying both parts of the inequality un-
der the probability sign by t/2 and applying Chebyshev’s inequality
to the exponents, we obtain that

p0,n ≤ e−tuEe
t
(
η+

ζ1+ζ2
2

+max ζ′+max ζ′′
2

)

= e−tuEe
t
(
η+

ζ1+ζ2
2

)
Ee

t
(

max ζ′+max ζ′′
2

)
. (2.9)
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Although ζ ′ and ζ ′′ may contain smaller number of summands, it
can be seen that this does not change the proof of (2.6) sufficiently.
Thus the estimate (2.7) remains valid and

Ee
t
(

max ζ′+max ζ′
2

)
< 1 + 4

√
24πt
√
pe6t2p. (2.10)

Next, according to the remark about limits of summation in ζ1 and
ζ2, the variance of ζ1+ζ2

2 does not exceed (n−1)p
2 . The variance of η

does not exceed max{0, 1− (n− 1)p}. Applying Laplace transfor-
mation to the sum η + ζ1+ζ2

2 , and since restrictions on n provide
(ε− p)/2 ≤ (n− 1)p/2 ≤ 1/2,

Ee
t
(
η+

ζ1+ζ2
2

)
≤ e

t2 max

{
(n−1)p

2 ,1− (n−1)p
2

}
2 < e

t2(1−ε/4)
2 . (2.11)

So, gathering (2.11), (2.10) and (2.9),

p0,n ≤ (1 + 4
√

24πt
√
pe6t2p)e

t2(1−ε/4)
2 e−tu.

Setting t = u
1−ε/4 , we obtain the desired estimate:

p0,n ≤ C2

√
Ae6Ae

− u2

2(1− ε4 ) . (2.12)

Case 1.4: n > p−1 + 1. In this case the two events inside the
probability p0,n are independent and Lemma 2.1 gives

p0,n ≤ 2(HB
A )2ψ(u)2. (2.13)

The bounds obtained in cases 1.1-1.4 allow us to estimate p0,n

for any value of n. Let p0(u) = 1√
2πu

e−
1
2
u2 . Estimates (2.3), (2.8),

(2.12), (2.13) imply that

2(Tp−1 + 1)
Tp−1+1∑
n=1

p0,n ≤ 2(Tp−1 + 1)×

×
{(

n0−1∑
n=1

(
2HB

A(n+1)/2 −H
B
A(n+1)

)
(1 + gn(u,N))+

+
∞∑

n=n0

C1

√
Ae−A

n−43
6
−B

2

)
p0(u) +
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+ p−1C2

√
Ae6Ae

− u2

2(1− ε4 ) + Tp−12(HB
A )2ψ(u)2

}
.

Recall that p−1 = u2/A. If Tu2 → ∞ and Tu2ψ(u) → 0, then
using the estimate above and the Bonferroni inequality on page
121 we conclude that

lim
u,N

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≤ A−1HB

A

and (2.14)

lim
u,N

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)/
Tu2p0(u) ≥ A−1HB

A −

−2A−1
n0−1∑
n=1

(
2HB

A(n+1)/2 −H
B
A(n+1)

)
−2C1e

−B2√
A

∞∑
n=n0

e−A
n−43

6 .

It was proved in Zholud (2008) that the limit

HB = lim
A→∞

A−1HB
A , HB > 0

exists. Thus A−1
(

2HB
A(n+1)/2 −H

B
A(n+1)

)
→ 0, when A → ∞.

Choosing n0 greater than 43 and letting A in (2.14) tend to infinity
we obtain the asymptotic behavior of the probability of high level

excursions for maximum of ζ
(N)
L (k) over the “upper” layer,

P

(
max

0<k≤TN
(1−q)N<L≤N

ζ
(N)
L (k) > u

)
= HBTu2p0(u)(1 + o(1)). (2.15)

The second part of the proof is to show that the asymptotic behav-

ior of the probability (1.1) is determined by the behavior of ζ
(N)
L (k)

over the upper layer, which corresponds to the area of maximal
variance of the field. Thus we need to estimate the probability of
the high level excursion of the maximum of the random walk over

the complementary set. Applying stationarity of ζ
(N)
L (k) with re-

spect to k we obtain the following estimate
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P

(
max

0<k≤TN
0<L≤(1−q)N

ζ
(N)
L (k) > u

)
≤ (Tp−1 + 1)

p−1−1∑
n=1

×

×P

(
max

0<k≤pN
(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) > u

)
. (2.16)

Let pn denote the probability under the sum sign. Bounds for
pn will be obtained in two steps.

Case 2.1: n < 13
16p
−1 − 1. The restriction on n ensures that the

sum extracted from ζ
(N)
L (k) in the equality below is not empty:

max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

ζ
(N)
L (k) = 1√

N

[(1−(n+1)q)N ]∑
i=[pN ]+1

ξi +

+ max
0<k≤pN

(1−(n+1)q)N<L≤(1−nq)N

1√
N

(
[pN ]∑
i=k

ξi +
k+L−1∑

i=[(1−(n+1)q)N ]+1

ξi

)
.

Repeating the proof of Lemma 2.1 we obtain the following analog
of the equality (2.2),

pn =

√
A√

2πσ′2u
e−

u2

2σ′2

∞∫
−∞

e−
Aw2/u2

2σ′2 e
√
Aw
σ′2 P (M(k, L) > w) dw,

(2.17)

where σ′2 is equal to [(1−(n+1)q)N ]−[pN ]
N .

The expression (2.2) for the probability in Lemma 2.1 differs from
(2.17) only in the variance σ′2 of the extracted summand. Recall

that σ2 in Lemma 2.1 is equal to [(1−q)N ]−[pN ]
N . It is straightforward

to show that

σ2

σ′2
= 1 +

nq

1− (n+ 1)q − p
+ o(u−2) = 1 + z.

With this notation the right-hand side of (2.17) takes form

√
Ae−

u2

2σ2
(1+z)

√
2πσ′2u

∞∫
−∞

e−
Aw2/u2

2σ2
(1+z)+

√
Aw
σ2

ze
√
Aw
σ2 P (M(k, L) > w) dw.
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The first exponent under the integral sign is a parabola with re-
spect to w and attains its maximum at the point w = z

z+1
u2√
A

.

Straightforward calculation then show that

pn ≤
√
A√

2πσ′2u
e−

u2

2σ2
K

∞∫
−∞

e
√
Aw
σ2 P (M(k, L) > w) dw,

where

K = 1 +
z

1 + z
= 1 +

nq

1− q − p
≥ 1 + nq.

Finally, owing to Lemma 2.1 there exists a constant C such that

pn ≤
σ

σ′
e−

nB
2 HB

A

1√
2πu

e−
u2

2 (1 + o(1)) ≤ Ce−
nB
2 HB

A p0(u),

where o(1)→ 0 uniformly in n when u,N →∞.

Case 2.2: np ≥ 13
16 . Now σ′2 can be arbitrary small and we

estimate pn using Lemma 1 of Piterbarg (1991):

pn ≤ P

 max
0<k≤pN

0<L≤ 3
16N

ζ
(N)
L (k) > u

 ≤ 2P( max
0<k≤ 3

16
N+pN

Sk >
1
2u
√
N)

≤ 2e
− u2

4( 3
16+p) ≤ 2e−u

2
.

Thus, combining the estimates for pn obtained in cases 2.1 and
2.2 with (2.16) and (2.15) we have

lim
u,N

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≤ HB +

HB
AC

A

∞∑
n=1

e−
nB
2 ,

lim
u,N

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)/
(Tu2p0(u)) ≥ HB.

It was proved in Zholud (2008) that the limit H = lim
B→∞

HB exists

and is positive. Letting first A, and then B tend to infinity, we
conclude that the upper and lower limits coincide and equal H.
This finishes the proof of Theorem 1.3.
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3 Very large deviations of the Shepp statis-
tic

Here we prove Theorem 1.4. The asymptotic behavior of the prob-
ability (1.1) under assumption that u/

√
N → ∞ is considered.

First, we find the asymptotic behavior of the probability

P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
. (3.1)

As in the previous section, we then show that the maximum of

the field ζ
(N)
L (k) over the complementary set {(k, L) : 0 < k ≤

TN, 0 < L ≤ N − 1} gives neglible contribution to the probability
(1.1).

Now a key lemma that plays an essential role in establishing the
asymptotic formula for (3.1).

Lemma 3.1. Let (ξ1, ξ2) be a Gaussian random vector such that
ξ1 and ξ2 are standard normal variables with correlation coefficient
α < 1. Then,

P (ξ1 > u, ξ2 > u) <
1√
2πu

e−
1
2
u2 1√

2πu
(1 + α)

√
1 + α√
1− α

e−
1
2
u2 1−α

1+α .

Proof. The variable ξ2 can be expressed as the sum of two inde-
pendent variables αξ1 and ζ, where ζ ∼ N(0, 1− α2). By ϕζ(·) we
will refer to the density function of ζ. Denoting the probability in
the statement of the lemma by I(u) we have

I(u) = P (ξ1 > u,αξ1 + ζ > u)

= 1√
2π

∞∫
u
e−

v2

2 P(ζ > u− αv)dv = − 1√
2π

∞∫
u

P(ζ>u−αv)
v de−

v2

2

= −P(ζ>u−αv)√
2πv

e−
v2

2

∣∣∣∣∞
u

+ 1√
2π

∞∫
u
e−

v2

2 dP(ζ>u−αv)
v

= e−
u2

2√
2πu

P (ζ > u(1− α))+
∞∫
u

e−
v2

2√
2π

(
α
ϕζ(u−αv)

v − P(ζ>u−αv)
v2

)
dv.
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Write K(u) for the first summand in the last expression. The
second summand is less than

α√
2πu

∞∫
u

e−
v2

2 ϕζ(u− αv)dv

and thus I(u) is bounded by

K(u) + α√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2

(
v2+

(u−αv)2

1−α2

)
dv

= K(u) + α e
−u

2

2√
2πu

∞∫
u

1√
2π(1−α2)

e
− 1

2
(v−αu)2

1−α2 dv

= K(u) + αK(u) = 1√
2πu

e−
1
2
u2(1 + α)P

(
ζ√

1−α2
> u

√
1−α√
1+α

)
.

The lemma now follows from the standard upper bound of the
standard normal distribution tail. �

Next, we estimate (3.1) using the Bonferroni inequality:

[TN ]P
(
ζ

(N)
N (1) > u

)
≥ P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
≥ [TN ]P

(
ζ

(N)
N (1) > u

)
−

∑
1≤l,m≤TN

l 6=m

P
(
ζ

(N)
N (l) > u, ζ

(N)
N (m) > u

)
.

By stationarity, and applying Lemma 3.1 with

α = αn = Eζ
(N)
N (1)ζ

(N)
N (n) = max{0, N − (n− 1)

N
},

we get that the double sum is bounded by

2TN
TN∑
n=2

P
(
ζ

(N)
N (1) > u, ζ

(N)
N (n) > u

)
< 2TN

TN∑
n=N+1

P
(
ζ

(N)
N (1) > u

)2

+ 2TN
N∑
n=2

1√
2πu

e−
1
2
u2 1√

2πu
(1 + αn)

√
1+αn√
1−αn

e−
1
2
u2 1−αn

1+αn .

As before let p0(u) denote 1√
2πu

e−
1
2
u2 , the asymptotic bound for

the standard normal distribution tail. The first summand is then
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less than

2(TN)2P
(
ζ

(N)
N (1) > u

)2
= 2(TN)2p0(u)2(1 + o(1))

and the second is estimated from above by

2TNp0(u)
2
√

2N√
2πu

N∑
n=2

(
e−

u2/N
4

)n−1

= o(TNp0(u)),

where we took into account that u/
√
N →∞.

Replacing the double sum by its upper estimate and dividing both
sides of the Bonferroni inequality by [TN ]p0(u), and assuming
TN ≥ 1, we get that

1+o(1) ≥
P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
[TN ]p0(u)

≥ 1−4TNp0(u)(1+o(1))+o(1).

Finally, for TNp0(u) → 0 we obtain the following asymptotic for-
mula for the probability (3.1),

P

(
max

0<k≤TN
ζ

(N)
N (k) > u

)
= [TN ]p0(u)(1 + o(1)). (3.2)

The remaining step is to note that the probability for the maxi-
mum over the complementary set is neglible. Since

P

(
max

0<k≤TN
0<L≤N−1

ζ
(N)
L (k) > u

)
≤ TN

N−1∑
L=1

P
(
ζ

(N)
L (1) > u

)
≤ TN

N−1∑
L=1

p0

(
u
√

N
L

)
= TNp0(u)

N−1∑
L=1

e−
u2(N−L)

2L

≤ TNp0(u)
N−1∑
L=1

(
e−

u2/N
2

)N−L
= o(TNp0(u)),

the latter estimate and (3.2) conclude the proof of Theorem 1.4.

4 Limit theorems for M
(N)
T

In this section we consider the case when T,N go to infinity. It
can be shown that for appropriate normalization constants aT and
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bT the limit distribution of
(
M

(N)
T − aT

)/
bT is Gumbel. Theo-

rem 4.1 exhibits the normalizing constants for three different limit
relations between T and N .

Theorem 4.1. Assume that one of the following relations hold:

1)
2 lnT

N
→ 0. 2)

2 lnT

N
→ θ2 > 0. 3)

2 lnT

N
→∞.

Then, for any fixed x,

P

(
max

0<k≤TN
0<L≤N

aT (ζ
(N)
L (k)− bT ) ≤ x

)
= e−e

−x
+ o(1),

where

aT =
√

2 lnT , bT =
√

2 lnT +
F (T,N) + 1

2 (ln lnT − lnπ)
√

2 lnT

and the function F (T,N) is given by

1) F (T,N) = lnH 2) F (T,N) = ln
Jθ
θ

3) F (T,N) = − ln
2 lnT

N
.

The proof follows from Lemma 3.1 of Zholud (2008) closely, and is
hence omitted.

The limit distribution for the case 2 lnT
N = θ2, 0 < θ < ∞ was

obtained by A.M. Kozlov in Kozlov (2004) and was reformulated
in Theorem 4.1 for comparison purpose.
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1 Introduction

First, we introduce two different techniques used in the asymptotic
theory of Gaussian processes and fields. For a Gaussian process
Z(t), consider asymptotic behavior of the probability

P

(
max
[0,T ]

Z(t) > u

)
, u→∞. (1.1)

In the case when Z(t) is a stationary Gaussian process with a
covariance function r(t) such that r(t)− r(0) is a regularly varying
function of index α for t→ 0, the exact asymptotic forms of (1.1)
were given by Pickands, see Pickands (1969a,b).

In the non-stationary case there are a number of results for
Gaussian processes with a unique point of maximum variance, see
e.g. Berman (1985), Hüsler (1990) and related papers. When Z(t)
is a Gaussian process with continuous paths, zero mean and non-
constant variance, and there is a unique fixed point of maximum
variance t0 in the interval [0, T ], the asymptotic behavior of proba-
bility in (1.1) is known. The theory sketched out above is described
in detail in Piterbarg (1996).

Next, defineX(t, s) = W (t+s)−W (t) and Y (t) = max
0≤s≤1

X(t, s),

for W (·) the standard Wiener process. Let MT = max
[0,T ]

Y (t) be the

maximum up to time T of Y (t). The aim of this paper is to find the
asymptotic behavior of P (MT > u), the probability of high level
excursions of Y (t) as u→∞ and to obtain the limiting distribution
of MT when T →∞.

For the first task it is crucial to use a representation of MT as a
maximum of the Gaussian field X(t, s) over rectangle [0, T ]× [0, 1]:

MT = max
[0,T ]×[0,1]

X(t, s).

Since for fixed s, X(·, s) is a stationary process, and for fixed t,
X(t, ·) is a process with a unique point of maximum variance, the
asymptotic behavior is obtained by combining standard techniques
for the corresponding cases. Let ψ(u) be the tail of the standard
normal distribution function. The following result and its proof,
as well as the expression for the constant H are given in Section 2.

Copyright c© 2011 by Dmitrii Zholud
www.zholud.com 138 md5 hash:

7B0B4906E175DBA0F2C4901E199E418D

http://www.zholud.com


Extremes of Wiener Process Increments

Theorem 1.1. If Tu2 → ∞ and Tu2ψ(u) → 0 when u → ∞,
then

P (MT > u) = HTu2ψ(u)(1 + o(1)).

When the asymptotic behavior of the tail of distribution of MT

is known, we find a limiting distribution of MT when T → ∞.
In this case it is essential to use the representation of MT as a
maximum up to time T of stationary process Y (t). When |t1−t2| >
1, the random variables Y (t1) and Y (t2) are independent . The
method of establishing the limit theorem is common. Introduce a
partition of [0, T ] into long blocks Ai = [i(S + 1), i(S + 1) + S) of
length S, and short blocks Bi = [i(S + 1) + S, (i+ 1)(S + 1)) of

length 1 such that [0, T ] =
n⋃
i=0

(Ai ∪ Bi). Then define a sequence

of independent identically distributed random variables (i.i.d. r.v.)
Yi = max

Ai
Y (t), i = 1, 2, .. Letting S to infinity and following the

proof of J. Pickands theorem for max{Y1, Y2, ...}, see Leadbetter
et al. (1983), the only thing left is to show that random variables
Ȳi = maxY (t) over Bi give negligible contributions to the limiting
distribution of the maximum MT = max{Y1, Ȳ1, Y2, Ȳ2, Y3, Ȳ3...}.
However, this idea is extended to obtain a more general result, see
Lemma 3.1. It will be used when building limit theorems for the
Shepp statistic for a Gaussian random walk, see Zholud (2009). As
a corollary of the lemma stated in Section 3 we obtain the limiting
Gumbel distribution for MT , when T →∞.

Theorem 1.2. For any fixed x and T →∞, the following relation
holds:

P

(
max

(t,s)∈[0,T ]×[0,1]
aT (W (t+ s)−W (t)− bT ) ≤ x

)
= e−e

−x
+ o(1),

where

aT =
√

2 lnT , bT =
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)
√

2 lnT
.

A similar result for the standardized Wiener process increments is
obtained in Kabluchko (2007). There are also a number of works
about strong laws for the increments of the Wiener process, see
e.g. Csörgő and Révész (1979), Frolov (2005).
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One of the applications of the result derived in this paper is
given in Zholud (2009). Let (ξi, i ≥ 1) be standard normal random

variables, and Sk be the corresponding random walk, Sk =
k∑
i=1

ξi,

S0 = 0. Define a random variable ζ
(N)
L (k) = 1√

N
(Sk+L−1 − Sk−1).

Asymptotic behavior of the probability

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
,

when u→∞, N →∞ in some synchronized way is then examined.
For fixed u, owing to the weak convergence of a random walk to
the Wiener process,

P

(
max

0<k≤TN
0<L≤N

ζ
(N)
L (k) > u

)
= P (MT > u) (1 + o(1)) , N →∞.

Paper Zholud (2009) shows that this equation also holds when
u→∞ and u/

√
N → 0.

2 Asymptotic behavior of the distribution
tail of MT

In this section we find the asymptotic behavior of the probability

P (MT > u) = P

(
max
0≤t≤T
0≤s≤1

W (t+ s)−W (t) > u

)
, (2.1)

when u → ∞ and T → ∞ in an appropriate way. As before, we
denote X(t, s) = W (t + s) −W (t). The proof is divided into two
steps:

First, for any positive constant B we focus on the asymptotic
behavior of maximum of X over a thin layer [0, T ]× [1−Bu−2, 1].
It will be shown that within this area and assuming that u is large,
X(t, s) and X(t, 1) behave in a similar way, and it is possible to
determine the asymptotic behavior using the standard technique
for stationary processes.

Second, knowing the asymptotic behavior of the maximum of
X over the area of its maximum variance, we will show that the
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maximum over the complementary set [0, T ] × [0, 1 − Bu−2] gives
neglible contribution to the probability in (2.1).

The proof of the first part is based on the Double Sum Method:
the lemma below is the analog of Lemma 6.1, Piterbarg (1996).
To proceed, let A and B be any positive constants and denote
p = Au−2, q = Bu−2 and A0(u) = [0, p] × [1 − q, 1]. Although
it is possible to obtain a representation similar to what we get in
Lemma 2.1 by repeating the proof of Lemma 6.1, Piterbarg (1996),
our proof does not follow the standard procedure. Instead of pass-
ing on to the family of conditional distributions as in Piterbarg
(1996), we extract the common part of the increment X(t, s) for
all (t, s) ∈ A0(u) and use independence of the Wiener process in-
crements.

Lemma 2.1. Let u→∞. Then

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= HB

A

1√
2πu

e−
u2

2 (1 + o(1)),

where

HB
A = e−

A+B
2 E exp

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t)

)
.

Proof. We have that since 1− q > p for large u,

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= P

(
W (1− q)−W (p) +

+ max
A0(u)

W (t+ s)−W (1− q) +W (p)−W (t) > u

)
,

and by stationarity and independence of the Wiener process in-
crements
W (t + s) −W (1 − q) and W (p) −W (t), the probability above is
equal to

P

(
ξ + max

A0(u)
W (t+ s− (1− q) + p)−W (t) > u

)
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= P

(
ξ + max

0≤t≤p
0≤s≤q

W (t+ s+ p)−W (t) > u

)
,

where random variable ξ is normally distributed with zero mean,
variance σ2 = 1− p− q and is independent of the expression inside
the maximum sign. Thus,

P

(
max
A0(u)

W (t+ s)−W (t) > u

)
= 1√

2πσ

∞∫
−∞

e−
v2

2σ2 P

(
max
0≤t≤p
0≤s≤q

W (t+ s+ p)−W (t) > u− v

)
dv.

After the change of variables v = u− w
u , the last expression equals

σ−1
√

2πu

∞∫
−∞

e−
(u−wu )2

2σ2 P

(
max
0≤t≤p
0≤s≤q

u(W (t+ s+ p)−W (t)) > w

)
dw

=
e−

u2

2σ2

√
2πσu

∞∫
−∞

e−
w2/u2

2σ2 e
w
σ2 P

(
max
0≤t≤A
0≤s≤B

W (t+ s+A)−W (t) > w

)
dw.

Next, by the dominated convergence theorem, which follows from
the upper estimate of the probability under the integral sign (see
Borel’s theorem, Piterbarg (1996), p.13), and relations σ2 → 1
and

e−
u2

2σ2 = e−
u2

2
(1+p+q+o(u−2))(1 + o(1)) = e−

u2

2 e−
A+B

2 (1 + o(1)),

when u→∞, we obtain the desired representation. �

Corollary 2.1.1.
1) HB

A is nondecreasing with respect to the parameters A and B.
2) HB

A1+A2
≤ HB

A1
+HB

A2
.

3) HB
A ≤ AHB

1 , for any integer A.

Our next aim is to move on from the rectangle [0, Au−2]× [1−
Bu−2, 1] to the layer [0, T ]× [1−Bu−2, 1]. We use Lemma 2.1 and
the Bonferroni inequality to obtain estimates of the probability of
high level excursions of the maximum of X. Then we show that
estimates from below and from above are asymptotically equiva-
lent.
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Let Ar(u) = [rAu−2, (r + 1)Au−2]× [1−Bu−2, 1]. For ease of no-
tation we suppress dependence on u. Using stationarity of X(t, s)
with respect to t, we obtain that

(Tu
2

A +1)P

(
max

(t,s)∈A0

X(t, s) > u

)
≥ P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

 ≥
≥ (Tu

2

A − 1)P

(
max

(t,s)∈A0

X(t, s) > u

)
−

−
∑

0≤l,m≤Tu2
A

+1

l 6=m

P

(
max

(t,s)∈Al
X(t, s) > u, max

(t,s)∈Am
X(t, s) > u

)
.

(2.2)
Let pl,m denote the summands in the last sum in (2.2). The sum,
owing to stationarity, does not exceed

2

(
Tu2

A
+ 1

) Tu2

A
+1∑

n=1

p0,n. (2.3)

Estimating the probabilities p0,n from above, we will show that the
sum (2.3) is negligible, and thus the upper and lower estimates in
(2.2) are asymptotically equivalent.

The estimates are obtained in slightly different ways, in the
same manner as in Lemma 7.1, Piterbarg (1996). The next lemma
is a modification of Lemma 6.3, Piterbarg (1996).

Lemma 2.2. There exists an absolute constant C such that in-
equality

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)e−

(r−1)A
4

holds for any A,B any 1 < r ≤ 1 + u2

A , and for any u, u ≥ u0,

u0 = inf

{
u : e−4Au−2 ≤ 1− 2Au−2 , Bu−2 ≤ 1

2

}
.

Proof. The Gaussian field X(t, s) has zero mean, is stationary in
t, and its covariance function is

K(t, s; t1, s1) = mes
(

[t, t+ s]
⋂

[t1, t1 + s1]
)
. (2.4)
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Consequently, a global Hölder condition holds:

E (X(t, s)−X(t1, s1))2 ≤ 2(|s− s1|+ |t− t1|). (2.5)

Introducing Y (v,w) = X(v) + X(w), where v = (t, s) and w =
(t1, s1), we get:

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)

≤ P

(
max
A0×Ar

Y (v,w) > 2u

)
.

Using (2.4), (2.5) and restrictions on r and u it is straightforward
to estimate the minimum and maximum values of the variance of
Y (v,w) and then to obtain an estimate from below of the covari-
ance function of normalized field Y ∗(v,w), see Lemma 6.3, Piter-
barg (1996). Further steps repeat the proof of the lemma. �

Corollary 2.2.1. When r > 1 + u2

A and u ≥ u0 the following
inequality holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤ C(AB)2ψ(u)2.

Condition r > 1 + u2

A implies that the events inside the probability
are independent and finishes the proof.

Corollary 2.2.2. When r = 1 and u ≥ u0, the following inequal-
ity holds

P

(
max

(t,s)∈A0

X(t, s) > u, max
(t,s)∈Ar

X(t, s) > u

)
≤
(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
ψ(u).

The proof follows Lemma 7.1 on p.107 in Piterbarg (1996). We are
now ready to estimate (2.3) from above. Since

Tu2

A
+1∑

n=1

p0,n = p0,1 +

u2

A
+1∑

n=2

p0,n +

Tu2

A
+1∑

n=u2

A
+2

p0,n
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and estimating the first summand by using Corollary 2.2.2, the sec-
ond using Lemma 2.2 and the last using Corollary 2.2.1, we get that

(2.3) ≤ 2
(
Tu2

A + 1
)
ψ(u)

{(
C(AB)2e−

1
4

√
A + (

√
A+ 1)HB

1

)
+

+ C(AB)2
∞∑
n=2

e−
1
4

(n−1)A + Tu2

A C(AB)2ψ(u)

}
.

Assuming that Tu2 → ∞ and Tu2ψ(u) → 0 it follows from (2.2),
(2.3), Lemma 2.1 and the estimate of (2.3) above that

lim
u→∞

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t,s)>u


Tu2ψ(u)

≤ A−1HB
A

and (2.6)

lim
u→∞

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t,s)>u


Tu2ψ(u)

≥ (A′)−1HB
A′ −

− 2 C
A′

{(
(A′B)2e−

√
A′
4 +

√
A′+1
C HB

1

)
+ (A′B)2

∞∑
n=2

e−
(n−1)A′

4

}
.

Thus, noticing that the expression in the last line tends to zero
when A′ →∞, and applying Corollary 2.1.1 3), we see that:

lim
A→∞

A−1HB
A ≤ lim

A′→∞
(A′)−1HB

A′ ≤ HB
1 <∞.

Finally, we want to show that the limit

HB = lim
A→∞

A−1HB
A , 0 < HB ≤ HB

1 <∞, (2.7)

that exists as a consequence of the estimate above, is positive. This
is done by considering the probability of high level excursion over
the subset D =

⋃
i
A2i ∩ [0, T ] × [0, 1] and following the proof of

D.16 in Piterbarg (1996).
Thus, assuming A and A′ in (2.6) tend to infinity and applying

(2.7), we obtain the asymptotic behavior of the probability of high
level excursion of the maximum of X(t, s) over the upper layer
[0, T ]× [1−Bu−2, 1]:
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Lemma 2.3. Assuming Tu2 →∞ and Tu2ψ(u)→ 0, the follow-
ing equality holds:

P

 max
0≤t≤T

1−Bu−2≤s≤1

X(t, s) > u

 = HBTu2ψ(u)(1 + o(1)).

Below we give the second part of the proof. It shows that the
asymptotic behavior of the probability of the high level excursion
of the maximum of X(t, s) over the upper layer, which corresponds
to the area of the maximum variance of the field, gives the main
contribution to (2.1).

Let Bn(u) = [0, T ]× [1− (n+ 1)Bu−2, 1− nBu−2] and assume
that the conditions Tu2 →∞ and Tu2ψ(u)→ 0 are satisfied. As
before, for notational convenience we suppress the dependence of
Bn on u.

Lemma 2.4. Starting from large enough values of u, if nBu−2 ≤
1
2 , then

P

(
max

(t,s)∈Bn
X(t, s) > u

)
≤ 4H2Be−

1
2
nBTu2ψ(u)(1 + c(u)),

where c(u)→ 0, when u→∞.

Proof. Normalizing by the maximum standard deviation of X(t, s)
over Bn we get

P

(
max

(t,s)∈Bn
X(t, s) > u

)
= P

(
max

(t,s)∈Bn

X(t,s)√
1−nBu−2

> u√
1−nBu−2

)

= P

 max
0≤t≤T/(1−nBu−2)

1− Bu−2

1−nBu−2≤s≤1

X(t, s) > u√
1−nBu−2



≤ P

 max
0≤t≤2T

1−2Bu−2≤s≤1

X(t, s) > u√
1−nBu−2

 .
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The expression on the right-hand side satisfies all the conditions
of Lemma 2.3, and for large enough u inequality ψ( u√

1−nBu−2
) ≤

2ψ(u)e−
1
2
nB holds uniformly in n. �

Lemma 2.5. If nBu−2 > 1
2 , then

P

 max
(t,s)∈[0,T ]×[0,1]

∖ n⋃
i=0

Bi

X(t, s) > u

 ≤ CTu4ψ(
√

2u).

Proof. Expanding the set under the maximum sign, we get

P

 max
(t,s)∈[0,T ]×[0,1]

∖ n⋃
i=0

Bi

X(t, s) > u

 ≤ P

 max
0≤t≤T
0≤s≤ 1

2

X(t, s) > u

 .

The maximum of the variance of X(t, s) over the set [0, T ]× [0, 1
2 ]

equals 1
2 . Theorem 8.1, Piterbarg (1996) finishes the proof. �

Now follows the proof of Theorem 1.1: Lemmas 2.3, 2.4 and 2.5
imply that

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t,s)>u

)
Tu2ψ(u)

≥ lim
u→∞

P

(
max

(t,s)∈B0

X(t,s)>u

)
Tu2ψ(u)

= HB and

lim
u→∞

P

(
max

[0,T ]×[0,1]
X(t,s)>u

)
Tu2ψ(u)

≤ lim
u→∞

1
Tu2ψ(u)

[
P

(
max

(t,s)∈B0

X(t, s) > u

)
+

u2

2B∑
n=1

P

(
max

(t,s)∈Bn
X(t, s) > u

)
+ P

(
max

(t,s)∈B̂
X(t, s) > u

)
≤ HB′ + 4H2B′ ×

∞∑
n=1

e−
1
2
nB′ ,

where B̂ denotes [0, T ] × [0, 1]
∖ u2

2B
+1⋃

n=0
Bn. Now note that the con-

stant HB = lim
A→∞

A−1HB
A is non-decreasing with respect to the

parameter B, and the last inequalities show that it is bounded
from above. Thus, lim

B→∞
HB = H, say, exists, finite and positive,

and lim
B′→∞

HB′ + 4H2B′ ×
∞∑
n=1

e−
1
2
nB′ also equals H. �
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3 Limit theorem for MT

In this section we consider the case where T goes to infinity, and
we obtain the limit distribution of (MT − aT )/bT for the appropri-
ate normalization functions aT and bT . First we prove a general
lemma, which can serve as a template for obtaining limiting theo-
rems not only for random fields, but for a family of fields as well.
We assume that the specific asymptotic behavior of the tail of the
distribution of the maximum of some field takes place and that
this asymptotic behavior is defined by an asymptotic relation be-
tween threshold u, parameter S that defines the set over which the
maximum is taken, and parameter N discussed below. The condi-
tion that defines the asymptotic behavior will be denoted by, say,
D(u,N, S). The following lemma shows that knowing asymptotic
behavior under D(u,N, S) we can derive a new condition involving
T and N such that if it holds when T goes to infinity, MT has
limiting Gumbel distribution.

Lemma 3.1. Assume that:
1) XN (t, s) N = 1, 2... is a family of fields stationary with respect
to the parameter t, and defined on the set [0,∞)× [0, 1].
2) For any N , any t, t1 such that |t− t1| > 1 and any s, s1 ∈ [0, 1],
the random variables XN (t, s) and XN (t1, s1) are independent.
3) By D(u,N, S) we refer to some logical statement that involves
variables u,N, S and such that if D(u,N, S) holds then the follow-
ing asymptotic behavior of the tail of the distribution of a maximum
of XN (t, s) over the set DS = [0, S]× [0, 1] takes place:

P

(
max
DS

XN (t, s) > u

)
∼ SF (u,N) (3.1)

for some function F (u,N). We also demand that if D(u,N, 1),
then (3.1) holds for S ≡ 1.

4)Let T → ∞ and suppose there exist appropriate normalizing
functions aT and bT such that

lim
T→∞

(N→∞)

TF (uT , N) = e−x

for any fixed x, where uT = bT + x
aT

. Functions aT and bT may
also depend on N .

Copyright c© 2011 by Dmitrii Zholud
www.zholud.com 148 md5 hash:

7B0B4906E175DBA0F2C4901E199E418D

http://www.zholud.com


Extremes of Wiener Process Increments

5)Let S = S(T ) be such a function that S →∞ and n = T
S+1 →∞

when T →∞.

Then, if D(uT , N, 1) and D(uT , N, S(T )) hold,

P

(
max
DT

XN (t, s) > uT

)
→ 1− e−e−x . (3.2)

Proof. Let us introduce a partition [0, T ] =
n⋃
i=0

(Ai ∪Bi), with

Ai = [i(S + 1), i(S + 1) + S]

Bi = [i(S + 1) + S, (i+ 1)(S + 1)] ,

so that |Ai| = S and |Bi| = 1 for all i. For the expression on the
left-hand side of (3.2) we have that

P

(
max
DT

XN (t, s) ≤ uT
)

= 1−P

(
n⋃
i=0

{
max

Ai×[0,1]
XN (t, s) > uT ∪ max

Bi×[0,1]
XN (t, s) > uT

})
.

Applying stationarity of XN (t, s) with respect to t we obtain the
following estimate:

1− nP

(
max
[0,1]2

XN (t, s) > uT

)
−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
≤

≤ P

(
max
DT

XN (t, s) ≤ uT
)
≤ 1−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
.

(3.3)

The term nP

(
max
[0,1]2

XN (t, s) > uT

)
is estimated using D(uT , N, 1)

and 3) and, for penultimate equality, 4)

nP

(
max
[0,1]2

XN (t, s) > uT

)
= nF (uT , N)(1 + o(1))

= TF (uT ,N)
S+1 (1+o(1)) = e−x(1+o(1))

S+1 = o(1).

Using the fact that max
Ai×[0,1]

XN (t, s) and max
Aj×[0,1]

XN (t, s) are in-

dependent for i 6= j, see 2), and, again, stationarity, we estimate
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the expression on the right-hand side of (3.3) using D(uT , N, S(T ))
and 3) in the third step, and 4) and 5) in the fifth

1−P

(
n⋃
i=0

max
Ai×[0,1]

XN (t, s) > uT

)
=

n∏
i=0

P

(
max

Ai×[0,1]
XN (t, s) ≤ uT

)

=

(
1−P

(
max

A0×[0,1]
XN (t, s) > uT

))n
= (1− SF (uT , N))n

= en ln(1−SF (uT ,N)) = e−nSF (uT ,N)(1+o(SF (uT ,N)))

= e−TF (uT ,N)(1+o(1)) = e−e
−x

(1 + o(1)).

It therefore follows from (3.3) that

e−e
−x

(1+o(1))+o(1) ≤ P

(
max
DT

XN (t, s) ≤ uT
)
≤ e−e−x(1+o(1)),

and this finishes the proof. �

Corollary 3.1.1 (The Wiener process).

Put XN (t, s) ≡ W (t + s) −W (t). We say that D(u,N, S) holds
if and only if Su2 → ∞ and Su2ψ(u) → 0 , u → ∞ . Thus,
conditions 1), 2) and 3) of the lemma are satisfied by Theorem 1.1.

It is easy to verify that Condition 4) is satisfied for

uT =
x√

2 lnT
+
√

2 lnT +
lnH + 1

2 (ln lnT − lnπ)
√

2 lnT
.

In 5) we set S(T ) =
√
T . Condition D(uT , N, 1) becomes equivalent

to uT → ∞ that is equivalent to T → ∞ owing to our choice of
uT . Finally, using 3) it is easy to show that

S(T )u2
Tψ(uT ) = S(T )/T×TF (uT , N) = ee

−x
(1+o(1))/

√
T = o(1).

Thus D(uT , N, S) is equivalent to T →∞ and Theorem 1.2 holds.
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